Wolf Run - Gambier - Martinsburg Transmission Project

General Information

Proposing entity name

Company proposal ID

PJM Proposal ID

Project title

Project description

Project in-service date

Tie-line impact

Interregional project

Is the proposer offering a binding cap on capital costs?

Additional benefits

Project Components

- 1. Wolf Run Gambier
- 2. Gambier Martinsburg
- 3. Wolf Run 345kV Substation
- 4. Gambier 69kV Upgrade
- 5. Martinsburg 69kV Upgrade
- 6. Wolf Run Transmission Interconnection

533

Wolf Run - Gambier - Martinsburg Transmission Project

The Wolf Run - Gambier - Martinsburg Transmission Project will include a new 3-position substation interconnecting the Galion - Ohio Central 345kV transmission line. The proposed substation will include a new 345/69kV transformer that will connect to the Gambier 69kV substation via a new 69kV transmission line. The proposed project will also connect the Gambier 69kV substation with the Martinsburg 69kV substation. The proposed project will require new right-of-way.

06/2024

No

No

Yes

Greenfield Transmission Line Component

Component title Wolf Run - Gambier

Point A Wolf Run

Point B Gambier

Point C

General route description

Terrain description

Right-of-way width by segment

Electrical transmission infrastructure crossings

Summer (MVA)	143.000000	179.000000

Normal ratings

N/A

Winter (MVA) 143.000000 179.000000

Conductor size and type 1033.5 kcmil "Curlew" ACSS conductor

Nominal voltage AC

Nominal voltage 69

Line construction type Overhead

• •

See Routing Map attachment for information on the general project route. Most high-voltage transmission projects will require a state siting approval. To begin the siting approval process, Central Transmission plans to hold pre-application meetings with the regulatory agency to introduce Central Transmission and the Project, as well as confirm its understanding of the process. Shortly thereafter, Central Transmission will simultaneously begin collecting siting data and start its outreach efforts so that public siting input is incorporated at the earliest stages of the Project. Once Central Transmission identifies a preferred site/route and at least one viable alternative site/route, Central Transmission will carry out the environmental and detailed engineering work necessary in order to establish a highly- detailed Project plan to support the siting applications.

Emergency ratings

The terrain traversed by the project features generally flat agricultural fields with some rolling hills and short segments of forested areas.

The project will require new rights of way for the entire project route.

No planned electrical transmission infrastructure crossings.

Civil infrastructure/major waterway facility crossing plan

Environmental impacts

Tower characteristics

Construction responsibility

Additional comments

Component Cost Details - In Current Year \$

Engineering & design

Permitting / routing / siting

ROW / land acquisition

Materials & equipment

Construction & commissioning

Construction management

Overheads & miscellaneous costs

Contingency

Total component cost

Component cost (in-service year)

The proposed Project was sited to avoid and minimize impacts to wetlands or other areas of environmental concern based on GIS data. It is possible that the Project cannot avoid impacts to a limited number of wetlands and waterways. If so, Central Transmission expects the Project will be subject to regulation under certain permitting programs, namely Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 401 of the Clean Water Act. Central Transmission will engage a qualified consultant to conduct a wetlands delineation of the selected site/route in order to establish the extent of proposed impacts and the need for specific permits from the state or U.S. Army Corps of Engineers. In addition to the permits described above, Central Transmission has identified other permits which may be required for the construction of the Project. Central Transmission considers these permits to be minor due to the more limited effort to prepare applications and the less intensive permitting processes which follow. These include permits related to airspace clearance, stormwater/erosion and sedimentation control, road crossings, and utility and railroad crossings.

The preliminary design for the transmission line utilizes tubular steel monopole structures with single circuit 1033.5 kcmil "Curlew" ACSS conductor in a delta configuration and a single optical groundwire.

Proposer

\$2,034,522.00

\$2,223,939.00

Greenfield Transmission Line Component

Component title Gambier - Martinsburg

Point A Gambier

Point B Martinsburg

Point C

Summer (MVA)	143.000000	179.000000

Normal ratings

Winter (MVA) 143.000000 179.000000

Conductor size and type 1033.5 kcmil "Curlew" ACSS conductor

Nominal voltage AC

Nominal voltage 69

Line construction type Overhead

See Routing Map attachment for information on the general project route. Most high-voltage transmission projects will require a state siting approval. To begin the siting approval process, Central Transmission plans to hold pre-application meetings with the regulatory agency to introduce Central Transmission and the Project, as well as confirm its understanding of the process. Shortly thereafter, Central Transmission will simultaneously begin collecting siting data and start its outreach efforts so that public siting input is incorporated at the earliest stages of the Project. Once Central Transmission identifies a preferred site/route and at least one viable alternative site/route, Central Transmission will carry out the environmental and detailed engineering work necessary in order to establish a highly- detailed Project plan to support the siting applications.

Emergency ratings

The terrain traversed by the project features generally flat agricultural fields with some rolling hills and short segments of forested areas.

The project will require new rights of way for the entire project route.

No planned electrical transmission infrastructure crossings.

No civil infrastructure or major waterway crossings.

Terrain description

Right-of-way width by segment

General route description

Electrical transmission infrastructure crossings

Civil infrastructure/major waterway facility crossing plan

Environmental impacts

Tower characteristics

Construction responsibility

Additional comments

Component Cost Details - In Current Year \$

Engineering & design

Permitting / routing / siting

ROW / land acquisition

Materials & equipment

Construction & commissioning

Construction management

Overheads & miscellaneous costs

Contingency

Total component cost

Component cost (in-service year)

The proposed Project was sited to avoid and minimize impacts to wetlands or other areas of environmental concern based on GIS data. It is possible that the Project cannot avoid impacts to a limited number of wetlands and waterways. If so, Central Transmission expects the Project will be subject to regulation under certain permitting programs, namely Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 401 of the Clean Water Act. Central Transmission will engage a qualified consultant to conduct a wetlands delineation of the selected site/route in order to establish the extent of proposed impacts and the need for specific permits from the state or U.S. Army Corps of Engineers. In addition to the permits described above, Central Transmission has identified other permits which may be required for the construction of the Project. Central Transmission considers these permits to be minor due to the more limited effort to prepare applications and the less intensive permitting processes which follow. These include permits related to airspace clearance, stormwater/erosion and sedimentation control, road crossings, and utility and railroad crossings.

The preliminary design for the transmission line utilizes tubular steel monopole structures with single circuit1033.5 kcmil "Curlew" ACSS conductor in a delta configuration and a single optical groundwire.

Proposer

\$4,650,411.00

\$5,083,290.00

2020-W3-533 5

Greenfield Substation Component

Component title Wolf Run 345kV Substation

Substation name Wolf Run 345kV Substation

Substation description The proposed new Wolf Run 345kV substation will be a three-position ring bus that will interconnect the existing Galion to Ohio Central 345kV transmission line. The third position will connect to a new 345/69kV transformer that will extend to a new 69kV transmission line to Gambier.

AC

345

Nominal voltage

Nominal voltage 345/69

Transformer Information

Name	Capacity (MVA)	
Wolf Run 345/69kV XFMR	204/241 MVA	
High Side	Low Side	Tertiary

69

Major equipment description

Transformer

Voltage (kV)

345kV Circuit Breakers (3): 4000A continuous current rating and 63kA short circuit rating 345kV Circuit Breaker Isolation Disconnect Switches & associated jumper assemblies: 4000A continuous current rating 345/69kV Transformer: 204/241 MVA

	Normal ratings	Emergency ratings
Summer (MVA)	2387.000000	2387.000000
Winter (MVA)	2387.000000	2387.000000

Environmental assessment Outreach plan Land acquisition plan Construction responsibility Additional comments **Component Cost Details - In Current Year \$** Engineering & design Permitting / routing / siting ROW / land acquisition

The proposed Project was sited to avoid and minimize impacts to wetlands or other areas of environmental concern based on GIS data. It is possible that the Project cannot avoid impacts to a limited number of wetlands and waterways. If so, Central Transmission expects the Project will be subject to regulation under certain permitting programs, namely Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 401 of the Clean Water Act. Central Transmission will engage a qualified consultant to conduct a wetlands delineation of the selected site/route in order to establish the extent of proposed impacts and the need for specific permits from the state or U.S. Army Corps of Engineers. In addition to the permits described above, Central Transmission has identified other permits which may be required for the construction of the Project. Central Transmission considers these permits to be minor due to the more limited effort to prepare applications and the less intensive permitting processes which follow. These include permits related to airspace clearance, stormwater/erosion and sedimentation control, road crossings, and utility and railroad crossings.

Central Transmission will identify and engage stakeholders, such as community officials and landowners within the Project area, early in the process and maintain an active dialogue throughout. Public meetings may be held to offer a venue for landowners and other interested community members to learn about the Project and for Central Transmission to learn more about specific landowner and community preferences. Central Transmission plans to make information available on its website and provide notification of public meetings to landowners within the Project area as required in the siting approval process.

The Project will be located primarily on new right-of-way to be purchased by Central Transmission. In addition, Central Transmission will procure any necessary easements required to access the site. Central Transmission will assign a Right-of-Way Manager to oversee all real estate related activities for the Project including appraisals, title work, surveying, land acquisition and restoration. A right-of-way agent will contact the property owner(s) in person to explain the Project and, as necessary, secure permission to conduct surveys, archaeological studies, etc. The right-of-way agent will be the primary point of contact to negotiate with the property owner to acquire the substation site and any required easements on a mutually agreeable basis. The right-of-way agents will continue to act as a liaison with the property owners during construction and through the restoration process.

Proposer

2020-W3-533 7

Materials & equipment

Construction & commissioning

Construction management

Overheads & miscellaneous costs

Contingency

Total component cost

\$10,697,652.00

Substation Upgrade Component

Component cost (in-service year)

Component title Gambier 69kV Upgrade

Substation name Gambier 69kV Substation

Substation zone Area 205 / Zone 1256

Add two (2) new 69kV circuit breakers to create two (2) new 69kV line positions to connect to the Wolf Run and Martinsburg Substations.

Transformer Information

Substation upgrade scope

New equipment description

None

Substation assumptions

Real-estate description

Construction responsibility

Additional comments

Component Cost Details - In Current Year \$

(2) 69kV circuit breakers - 3000A

\$11,693,427.00

It appears that the Gambier 69V substation can be expanded to accommodate two new transmission line connections and that the substation has space available.

The proposed facilities can be accommodated within the current substation fence without acquiring additional real-estate.

AEP

Engineering & design

Permitting / routing / siting

ROW / land acquisition

Materials & equipment

Construction & commissioning

Construction management

Overheads & miscellaneous costs

Contingency

Component cost (in-service year)

Total component cost

Substation Upgrade Component

Component title Martinsburg 69kV Upgrade

Substation name Martinsburg 69kV

Substation zone Area 205 / Zone 1256

Substation upgrade scope

Add one (1) new 69kV circuit breaker to create one (1) new 69kV line position to connect to the Gambier 69kV Substation.

\$1,856,930.00

\$2,029,782.00

Transformer Information

None

New equipment description

Substation assumptions

Real-estate description

(1) 69kV circuit breaker - 3000A

It appears that the Martinsburg 69V substation can be expanded to accommodate one new transmission line connection and that the substation has space available.

The proposed facilities can be accommodated within the current substation fence without acquiring additional real-estate.

2020-W3-533 9

Construction responsibility	AEP
Additional comments	
Component Cost Details - In Current Year \$	
Engineering & design	
Permitting / routing / siting	
ROW / land acquisition	
Materials & equipment	
Construction & commissioning	
Construction management	
Overheads & miscellaneous costs	
Contingency	
Total component cost	\$889,258.00
Component cost (in-service year)	\$972,039.00
Transmission Line Upgrade Component	
Component title	Wolf Run Transmission Interconnection
Impacted transmission line	Galion - Ohio Central 345kV Transmission Line
Point A	Galion 345kV Substation
Point B	Ohio Central 345kV Transmission Line
Point C	
Terrain description	Generally flat agricultural fields.
Existing Line Physical Characteristics	
Operating voltage	345

Conductor size and type	N/A	
Hardware plan description	N/A	
Tower line characteristics	N/A	
Proposed Line Characteristics		
	Designed	Operating
Voltage (kV)	345.000000	345.000000
	Normal ratings	Emergency ratings
Summer (MVA)	1228.000000	1370.000000
Winter (MVA)	1228.000000	1370.000000
Conductor size and type	N/A	
Shield wire size and type	N/A	
Rebuild line length	<.25 miles	
Rebuild portion description	The existing line will be broken Wolf Run 345kV Substation.	and new deadend towers installed to facilitate looping into the new
Right of way	The existing right-of-way will be necessary to loop the lines into	reused to facilitate the transmission interconnection facilities the new substation.
Construction responsibility	AEP	
Additional comments		
Component Cost Details - In Current Year \$		
Engineering & design		
Permitting / routing / siting		
ROW / land acquisition		

Materials & equipment

Construction & commissioning

Construction management

Overheads & miscellaneous costs

Contingency

Total component cost

Component cost (in-service year)

Congestion Drivers

None

Existing Flowgates

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	СКТ	Voltage	TO Zone	Analysis type
AEP-T424	245558	05PITTSBUR	245562	05W MT VER	1	69	205	FERC 715 Thermal
AEP-T429	245558	05PITTSBUR	245562	05W MT VER	1	69	205	FERC 715 Thermal
AEP-T430	245558	05PITTSBUR	245562	05W MT VER	1	69	205	FERC 715 Thermal
AEP-T431	245558	05PITTSBUR	245562	05W MT VER	1	69	205	FERC 715 Thermal
AEP-T479	245558	05PITTSBUR	245559	05S MT VER	1	69	205	FERC 715 Thermal
AEP-T480	245559	05S MT VER	245556	05N MT VER	1	69	205	FERC 715 Thermal
AEP-T473	245559	05S MT VER	245556	05N MT VER	1	69	205	FERC 715 Thermal
AEP-T481	245556	05N MT VER	245553	05MT VERNO	1	69	205	FERC 715 Thermal
AEP-T474	245556	05N MT VER	245553	05MT VERNO	1	69	205	FERC 715 Thermal
AEP-T472	245558	05PITTSBUR	245559	05S MT VER	1	69	205	FERC 715 Thermal
AEP-T482	245562	05W MT VER	245558	05PITTSBUR	1	69	205	FERC 715 Thermal
AEP-T470	245562	05W MT VER	245558	05PITTSBUR	1	69	205	FERC 715 Thermal
AEP-T475	245562	05W MT VER	245558	05PITTSBUR	1	69	205	FERC 715 Thermal

\$999,997.00

\$1,093,083.00

FG#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	CKT	Voltage	TO Zone	Analysis type
AEP-T477	245562	05W MT VER	245558	05PITTSBUR	1	69	205	FERC 715 Thermal
AEP-T478	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T476	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T471	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T464	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T466	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T467	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T469	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T483	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T484	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal
AEP-T485	243153	05WMTVER	245562	05W MT VER	1	138/69	205	FERC 715 Thermal

New Flowgates

None

Financial Information

Capital spend start date 01/2021

Construction start date 01/2023

Project Duration (In Months) 41

Cost Containment Commitment

Cost cap (in current year)

Cost cap (in-service year)

Components covered by cost containment

1. Wolf Run - Gambier - Proposer

- 2. Gambier Martinsburg Proposer
- 3. Wolf Run 345kV Substation Proposer

Cost elements covered by cost containment

Engineering & design	Yes
Permitting / routing / siting	Yes
ROW / land acquisition	Yes
Materials & equipment	Yes
Construction & commissioning	Yes
Construction management	Yes
Overheads & miscellaneous costs	Yes
Taxes	Yes
AFUDC	Yes
Escalation	Yes
Additional Information	
Is the proposer offering a binding cap on ROE?	No
Is the proposer offering a Debt to Equity Ratio cap?	

Additional comments

None