Broad Creek - Robinson Run 230/500kV Transmission Project

General Information

Proposing entity name
Does the entity who is submitting this proposal intend to be the Designated Entity for this proposed project?

Company proposal ID
PJM Proposal ID
Project title
Project description

Email

Project in-service date
Tie-line impact
Interregional project
Is the proposer offering a binding cap on capital costs?
Additional benefits

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
203

Broad Creek - Robinson Run 230/500kV Transmission Project
The Broad Creek - Robinson Run Transmission Project includes a new 500/230kV substation, a new 500kV substation, and a new 500kV transmission line. The new Broad Creek 500/230kV substation will include a six (6) position breaker and a half arrangement 230 kV yard connected to a three (3) position ringbus configuration 500 kV yard via two (2) transformers. The 230 kV portion of the substation will interconnect the Graceton - Bagley \#1 230kV transmission line and the Graceton - Bagley \#2 230kV transmission line. The 500kV portion will connect to the new three (3) position ringbus configuration 500kV Robinson Run Switching Station via a new 500 kV transmission line. The 500 kV transmission line will be built in the existing corridor that contains the Graceton - Cooper 230 kV transmission line and the Conastone - Peach Bottom 500kV transmission line. While in this corridor, the Graceton - Cooper 230kV transmission line will be demolished and replaced with a double circuit 500/230kV transmission line. The 500kV transmission line will terminate at the new Robinson Run Switching Station and the 230kV transmission line will continue on to the Cooper Substation.

CONFIDENTIAL
05/2028
Yes

No

Yes
CONFIDENTIAL

Project Components

1. Broad Creek $230 / 500 \mathrm{kV}$ Substation
2. Robinson Run 500kV Switching Station
3. Broad Creek - Robinson Run 230/500kV Transmission Line
4. Graceton - Bagley \#1 230kV Interconnection
5. Graceton - Bagley \#2 230kV Interconnection
6. Delta Power Plant - Peach Bottom 500kV Interconnection

Greenfield Substation Component

Component title

Project description
Substation name
Substation description

Nominal voltage
Nominal voltage
Transformer Information

	Name	Capacity (MVA)
Transformer	Broad Creek 500/230kV Transformberal	
Voltage (kV)	High Side	Low Side
Tertiary		
	500	230

[^0]
Broad Creek 230/500kV Substation

CONFIDENTIAL
Broad Creek
The Broad Creek Substation will include a six (6) position breaker and a half arrangement configuration 230 kV yard that connects to a three (3) position ringbus configuration 500 kV yard via two (2) transformers.

AC
500/230

Name

Capacity (MVA)

Broad Creek 500/230kV TransforfeyC2

Major equipment description

Summer (MVA)
Winter (MVA)
Environmental assessment

Outreach plan

500 kV circuit breakers (3) will have a continuous current rating of 5000A, a 3464 MVA rating, and a short circuit current rating of 63 kA . 500 kV terminal equipment will be rated at 5000 A . 230 kV circuit breakers (9) will have a continuous current rating of 4000A, a 1593 MVA rating, and a short circuit current rating of 63kA. 230kV terminal equipment will be rated at 4000A. The two (2) 500/230kV transformers will each have a capacity of 1640 MVA.

Normal ratings
 Emergency ratings

4330.000000
4330.000000
4330.000000
4330.000000

The proposed Project was sited to avoid and minimize impacts to wetlands or other areas of environmental concern based on GIS data. It is possible that the Project cannot avoid impacts to a limited number of wetlands and waterways. If so, Proposer expects the Project will be subject to regulation under certain permitting programs, namely Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 401 of the Clean Water Act. Proposer will engage a qualified consultant to conduct a wetlands delineation of the selected site/route in order to establish the extent of proposed impacts and the need for specific permits from the state or U.S. Army Corps of Engineers. In addition to the permits described above, Proposer has identified other permits which may be required for the construction of the Project. Proposer considers these permits to be minor due to the more limited effort to prepare applications and the less intensive permitting processes which follow. These include permits related to airspace clearance, stormwater/erosion and sedimentation control, road crossings, and utility and railroad crossings.

Proposer will identify and engage stakeholders, such as community officials and landowners within the Project area, early in the process and maintain an active dialogue throughout. Public meetings may be held to offer a venue for landowners and other interested community members to learn about the Project and for Proposer to learn more about specific landowner and community preferences. Proposer plans to make information available on its website and provide notification of public meetings to landowners within the Project area as required in the siting approval process.

Land acquisition plan

Construction responsibility
Benefits/Comments

Component Cost Details - In Current Year \$

Engineering \& design
Permitting / routing / siting
ROW / land acquisition
Materials \& equipment
Construction \& commissioning
Construction management

Overheads \& miscellaneous costs
Contingency
Total component cost
Component cost (in-service year)

Greenfield Substation Component

Component title

Project description

The Project will be located primarily on new right-of-way to be purchased by Proposer. In addition, Proposer will procure any necessary easements required to access the site. Proposer will assign a Right-of-Way Manager to oversee all real estate related activities for the Project including appraisals, title work, surveying, land acquisition and restoration. A right-of-way agent will contact the property owner(s) in person to explain the Project and, as necessary, secure permission to conduct surveys, archaeological studies, etc. The right-of-way agent will be the primary point of contact to negotiate with the property owner to acquire the substation site and any required easements on a mutually agreeable basis. To the extent that negotiations reach an impasse, Proposer will be able to pursue eminent domain. The right-of-way agents will continue to act as a liaison with the property owners during construction and through the restoration process.

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
$\$ 57,577,800.00$
\$69,660,848.00

Robinson Run 500kV Switching Station
CONFIDENTIAL

Substation name

Substation description

Nominal voltage
Nominal voltage

Summer (MVA)

Winter (MVA)
Environmental assessment

Outreach plan

Transformer Information

None

Major equipment description

Robinson Run Switching Station

The 500kV Robinson Run Switching Station will be a three-position ring bus that will interconnect the existing Delta Power Plant to Peach Bottom 500kV transmission line. The third position will connect to the new Broad Creek to Robinson Run 500kV transmission line.

AC
500

500kV circuit breakers (3) will have a continuous current rating of 5000A, a 3464 MVA rating, and a short circuit current rating of 63 kA . 500 kV terminal equipment will be rated at 5000 A .

Normal ratings Emergency ratings

4330.000000
4330.000000
4330.000000
4330.000000

The proposed Project was sited to avoid and minimize impacts to wetlands or other areas of environmental concern based on GIS data. It is possible that the Project cannot avoid impacts to a limited number of wetlands and waterways. If so, Proposer expects the Project will be subject to regulation under certain permitting programs, namely Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 401 of the Clean Water Act. Proposer will engage a qualified consultant to conduct a wetlands delineation of the selected site/route in order to establish the extent of proposed impacts and the need for specific permits from the state or U.S. Army Corps of Engineers. In addition to the permits described above, Proposer has identified other permits which may be required for the construction of the Project. Proposer considers these permits to be minor due to the more limited effort to prepare applications and the less intensive permitting processes which follow. These include permits related to airspace clearance, stormwater/erosion and sedimentation control, road crossings, and utility and railroad crossings.

Proposer will identify and engage stakeholders, such as community officials and landowners within the Project area, early in the process and maintain an active dialogue throughout. Public meetings may be held to offer a venue for landowners and other interested community members to learn about the Project and for Proposer to learn more about specific landowner and community preferences. Proposer plans to make information available on its website and provide notification of public meetings to landowners within the Project area as required in the siting approval process.

Land acquisition plan

Construction responsibility
Benefits/Comments

Component Cost Details - In Current Year \$

Engineering \& design
Permitting / routing / siting
ROW / land acquisition
Materials \& equipment
Construction \& commissioning
Construction management

Overheads \& miscellaneous costs
Contingency
Total component cost
Component cost (in-service year)

Greenfield Transmission Line Component

Component title

Project description

The Project will be located primarily on new right-of-way to be purchased by Proposer. In addition, Proposer will procure any necessary easements required to access the site. Proposer will assign a Right-of-Way Manager to oversee all real estate related activities for the Project including appraisals, title work, surveying, land acquisition and restoration. A right-of-way agent will contact the property owner(s) in person to explain the Project and, as necessary, secure permission to conduct surveys, archaeological studies, etc. The right-of-way agent will be the primary point of contact to negotiate with the property owner to acquire the substation site and any required easements on a mutually agreeable basis. To the extent that negotiations reach an impasse, Proposer will be able to pursue eminent domain. The right-of-way agents will continue to act as a liaison with the property owners during construction and through the restoration process.

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
\$11,810,352.00
\$14,288,825.00

Broad Creek - Robinson Run 230/500kV Transmission Line

CONFIDENTIAL

Point A

Broad Creek

Robinson Run

Cooper

Normal ratings

3280.000000
3280.000000

Emergency ratings

4100.000000
4100.000000

Triple Bundle 1272 kcmil "Bittern" ACSS High Strength
AC
500/230

Overhead
See Routing Map attachment for information on the general project route. Most high-voltage transmission projects will require a state siting approval. To begin the siting approval process, Proposer plans to hold pre-application meetings with the regulatory agency to introduce Proposer and the Project, as well as confirm its understanding of the process. Shortly thereafter, Proposer will simultaneously begin collecting siting data and start its outreach efforts so that public siting input is incorporated at the earliest stages of the Project. Once the Proposer identifies a preferred site/route and at least one viable alternative site/route, Proposer will carry out the environmental and detailed engineering work described in the Site Selection/Routing Analysis section above in order to establish a highly- detailed Project plan to support the siting applications.

The terrain traversed by the project features an existing ROW. The land around the existing ROW consists of farmland and forested areas.

The project proposes to utilize the existing ROW in the Graceton - Cooper corridor.
Electrical infrastructure crossings may be required depending on final line route. This will be coordinated during the detailed design process with the interconnection PTO.

No civil infrastructure or major waterway crossings.

Environmental impacts

Tower characteristics

Construction responsibility
Benefits/Comments

Component Cost Details - In Current Year \$

Engineering \& design
Permitting / routing / siting
ROW / land acquisition
Materials \& equipment
Construction \& commissioning
Construction management
Overheads \& miscellaneous costs

Contingency

Total component cost

The proposed Project was sited to avoid and minimize impacts to wetlands or other areas of environmental concern based on GIS data. It is possible that the Project cannot avoid impacts to a limited number of wetlands and waterways. If so, Proposer expects the Project will be subject to regulation under certain permitting programs, namely Section 404 of the Clean Water Act, Section 10 of the Rivers and Harbors Act, and Section 401 of the Clean Water Act. Proposer will engage a qualified consultant to conduct a wetlands delineation of the selected site/route in order to establish the extent of proposed impacts and the need for specific permits from the state or U.S. Army Corps of Engineers. In addition to the permits described above, Proposer has identified other permits which may be required for the construction of the Project. Proposer considers these permits to be minor due to the more limited effort to prepare applications and the less intensive permitting processes which follow. These include permits related to airspace clearance, stormwater/erosion and sedimentation control, road crossings, and utility and railroad crossings.

The preliminary design for the transmission line utilizes tubular steel monopole structures with double circuit conductor in a vertical configuration. Triple bundle 1272 kcmil "Bittern" ACSS high strength conductor will be used for the 500 kV circuit. The existing conductor on the Graceton Cooper 230kV transmission line will be used for the 230 kV circuit. Two optical groundwires will be utilized.

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
\$32,261,855.00

Component cost (in-service year)

$\$ 38,981,555.00$

Transmission Line Upgrade Component

Component title

Project description

Impacted transmission line

Point A

Point B
Point C
Terrain description

Existing Line Physical Characteristics

Operating voltage
Conductor size and type
Hardware plan description
Tower line characteristics

Proposed Line Characteristics

Voltage (kV)

Summer (MVA)
Winter (MVA)
Conductor size and type

Graceton - Bagley \#1 230kV Interconnection
CONFIDENTIAL
Graceton - Bagley
Graceton
Bagley

The terrain description is farmland.

230
N/A
N/A
N/A

Designed
230.000000

Normal ratings Emergency ratings
1331.000000
1795.000000

N/A

Operating
230.000000
1594.000000
1851.000000

Shield wire size and type
Rebuild line length
Rebuild portion description

Right of way

Construction responsibility
Benefits/Comments

Component Cost Details - In Current Year \$

Engineering \& design
Permitting / routing / siting
ROW / land acquisition
Materials \& equipment
Construction \& commissioning
Construction management
Overheads \& miscellaneous costs
Contingency
Total component cost
Component cost (in-service year)

Transmission Line Upgrade Component

Component title

Project description
Impacted transmission line

N/A
<0.25 miles

The existing line will be broken and new deadend towers installed to facilitate looping into the new Broad Creek 500/230kV Substation.

The existing right-of-way will be reused to facilitate the transmission interconnection facilities necessary to loop the lines into the new substation.

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
$\$ 690,000.00$
\$840,119.00

Graceton - Bagley \#2 230kV Interconnection
CONFIDENTIAL
Graceton - Bagley

Point A

Point B
Graceton

Point C
Terrain description

Existing Line Physical Characteristics

Operating voltage 230
Conductor size and type N/A
Hardware plan description N/A
Tower line characteristics N/A

Proposed Line Characteristics

Voltage (kV)

Summer (MVA)
Winter (MVA)
Conductor size and type
Shield wire size and type
Rebuild line length
Rebuild portion description

Right of way
Bagley

Designed

230.000000

Normal ratings
1331.000000
1795.000000

N/A
N/A
<0.25 miles

The terrain description is farmland.

The existing line will be broken and new deadend towers installed to facilitate looping into the new Broad Creek 500/230kV Substation.

The existing right-of-way will be reused to facilitate the transmission interconnection facilities necessary to loop the lines into the new substation.

Construction responsibility

Benefits/Comments

Component Cost Details - In Current Year \$

Engineering \& design
Permitting / routing / siting
ROW / land acquisition

Materials \& equipmen
Construction \& commissioning
Construction management

Overheads \& miscellaneous costs

Contingency
Total component cost
Component cost (in-service year)

Transmission Line Upgrade Component

Component title

Project description
mpacted transmission line
Point A

Point B

Point C
Terrain description

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL
$\$ 690,000.00$
$\$ 840,119.00$

Delta Power Plant - Peach Bottom 500kV Interconnection

CONFIDENTIAL
Delta Power Plant - Peach Bottom
Delta Power Plant

Peach Bottom

The terrain description is farmland.

Existing Line Physical Characteristics

Operating voltage 500
Conductor size and type N/A
Hardware plan description N/A
Tower line characteristics N/A

Proposed Line Characteristics

Voltage (kV)

Summer (MVA)
Winter (MVA)
Conductor size and type
Shield wire size and type
Rebuild line length
Rebuild portion description

Right of way

Construction responsibility
Benefits/Comments

Component Cost Details - In Current Year \$

Engineering \& design
Permitting / routing / siting

Designed

500.000000

Normal ratings
2338.000000
3062.000000

N/A
N/A
<0.25 miles
The existing line will be broken and new deadend towers installed to facilitate looping into the new 500kV Robinson Run Switching Station.

The existing right-of-way will be reused to facilitate the transmission interconnection facilities necessary to loop the lines into the new substation.

CONFIDENTIAL
CONFIDENTIAL

CONFIDENTIAL
CONFIDENTIAL

ROW / land acquisition
Materials \& equipment

Construction \& commissioning
Construction management
Overheads \& miscellaneous costs

Contingency

Total component cost
Component cost (in-service year)

CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
CONFIDENTIAL
\$1,150,000.00
$\$ 1,400,199.00$

Congestion Drivers

None

Existing Flowgates

FG \#	From Bus No.	From Bus Name	To Bus No.	To Bus Name	CKT	Voltage	TO Zone	Analysis type
28-GD-W1	270072	FUR RUN_500	270073	FUR RUN_230	1	$500 / 230$	225	Gen Deliv (winter)
28-GD-W2	270072	FUR RUN_500	270073	FUR RUN_230	2	$500 / 230$	225	Gen Deliv (winter)
28-GD-S2-W3270072	FUR RUN_500	270073	FUR RUN_230	1	$500 / 230$	225	Gen Deliv (winter)	
28-GD-S2-W3270072	FUR RUN_500	270073	FUR RUN_230	2	$500 / 230$	225	Gen Deliv (winter)	
28-GD-S2-W9900066	PCHBTM1N	270072	FUR RUN_500	1	500	$230 / 225$	Gen Deliv (winter)	
35-GD-S2-W1200066	PCHBTM1N	270072	FUR RUN_500	1	$500 / 500$	$230 / 225$	Gen Deliv (winter)	
35-GD-W5	200064	PCHBTM1S	200004	CNASTONE	1	$500 / 500$	$230 / 232$	Gen Deliv (winter)
35-GD-W6	200064	PCHBTM1S	200004	CNASTONE	1	$500 / 500$	$230 / 232$	Gen Deliv (winter)
35-GD-S2-W1900064	PCHBTM1S	200004	CNASTONE	1	$500 / 500$	$230 / 232$	Gen Deliv (winter)	
35-GD-S2-W3800064	PCHBTM1S	200004	CNASTONE	1	$500 / 500$	$230 / 232$	Gen Deliv (winter)	
35-GD-S2-W5200064	PCHBTM1S	200004	CNASTONE	1	$500 / 500$	$230 / 232$	Gen Deliv (winter)	Included
28-GD-S2-W1200073	FUR RUN_230	220963	CONASTON	2	230	$232 / 225$	Gen Deliv (winter)	

| FG \# | From Bus No. | From Bus Name | To Bus No. | To Bus Name | CKT | Voltage | TO Zone | Analysis type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 28-GD-S2-W1070073 | FUR RUN_230 | 220963 | CONASTON | 1 | 230 | $232 / 225$ | Gen Deliv (winter) | |
| 28-GD-W19 | 270073 | FUR RUN_230 | 220963 | CONASTON | 1 | 230 | $232 / 225$ | Gen Deliv (winter) |
| 28-GD-W20 | 270073 | FUR RUN_230 | 220963 | CONASTON | 2 | 230 | $232 / 225$ | Gen Deliv (winter) |
| 28-GD-S2-W3200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W3300064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W1200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W2200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W3200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W3600064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-W4 | 200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) |
| 28-GD-W5 | 200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) |
| 28-GD-W110 200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-W111 200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-W112 200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-W16 | 200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) |
| 28-GD-S2-W9600064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W3800064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |
| 28-GD-S2-W3200064 | PCHBTM1S | 200004 | CNASTONE | 1 | 500 | $232 / 230$ | Gen Deliv (winter) | |

New Flowgates

CONFIDENTIAL

Financial Information

Capital spend start date
Construction start date
Project Duration (In Months)

01/2024
01/2026
52

Cost Containment Commitment

Cost cap (in current year)	CONFIDENTIAL
Cost cap (in-service year)	CONFIDENTIAL
Components covered by cost containment	
1. Broad Creek 230/500kV Substation - Proposer	
2. Robinson Run 500kV Switching Station - Proposer	
3. Broad Creek - Robinson Run 230/500kV Transmission Line - Proposer	
Cost elements covered by cost containment	Yes
Engineering \& design	Yes
Permitting / routing / siting	Yes
ROW / land acquisition	Yes
Materials \& equipment	Yes
Construction \& commissioning	Yes
Construction management	Yes
Overheads \& miscellaneous costs	Yes
Taxes	Yes
AFUDC	No
Escalation	CONFIDENTIAL
Additional Information	NoNTIAL
Is the proposer offering a binding cap on ROE?	Noser offering a Debt to Equity Ratio cap?

Additional Comments

None

[^0]: Transformer

