

PJM Proposal for Using E3 "Delta" Method for Allocating PortfolioELCCMW to ClassELCCMW

Andrew Levitt Market Design and Economics Department Aug. 12, 2020

PJM Aims to Use the "Delta Method" For Allocating PortfolioELCCMW to Classes

- The ELCC model identifies a total quantity of reliability MW for the entire portfolio of all limited duration and intermittent resources (this is the "PortfolioELCCMW").
- Downstream of this calculation, the PortfolioELCCMW must be allocated to individual units. In the PJM proposal, this happens by way of classes and unit-specific performance adjustments.
- E3 developed the "Delta Method" for allocating PortfolioELCCMW to individual resources.
- The "Delta Method" can also be applied to allocation of PortfolioELCCMW to classes, which is what PJM prefers to do.
- To do that, PJM derives an "" that is a small (e.g., 1 GW) version of the hourly profincremental representative of each classile of the entire class. The Delta Method is run with the incremental representative rather than with actual units.
- PJM has not yet implemented the "Delta Method". In case of practical difficulties in implementation, PJM would use a simpler allocation method.

In order to apply the Delta Method to classes, replace the term *"individual resource*" with the term *"incremental representative of each class*".

https://www.pjm.com/-/media/committees-groups/task-forces/ccstf/2020/20200807/20200807-item-04-e3-allocating-elccmw-from-portfolio-to-classes.ashx

13

0 Exa **Delta Method:** Numerical

- + The following represents a simple and illustrative numeric example demonstrating how ELCC credits would be calculated using the proposed methodology on a system with solar, wind, and storage resources
- The illustrative portfolio is representative of the current California electricity system, which has a peak load of approximately 50,000 MW

Item	Units	Solar	Wind	Storage	Notes
# of Plants	#	200	50	10	
Representative Plant Size	MW	100	100	100	
Total Capacity	MW	20,000	5,000	1,000	Plant size * # of plants
First-In ELCC for	MW	50	30	80	
Representative Plant	%	50%	30%	80%	
Last-In ELCC for	MW	10	20	90	2
Representative Plant	%	10%	20%	90%	3
Portfolio ELCC	MW	8,000			
Portfolio Interactive Effects	MW	4,100			Portfolio ELCC – Sum of Last-In ELCCs for All Resources
				2	8,000 - (200 * 10 + 50 * 20 + 10 * 90)
Individual Interactive Effect	MW	+40	+10	-10	First-In ELCC MW – Last-In ELCC MW for Representative Resources
					Solar: 50 - 10
					Wind: 30 - 20
					Storage: 80 - 90
Sum of Individual Interactive Effects	MW	8,400			200 * 40 + 50 * 10 + 10 * -10
Individual Resource ELCC Adjustments	MW	20	5	-5	Individual Interactive Effect / Sum of Individual Interactive Effects * Portfolio Interactive Effects
					Solar: 40 / 8,400 * 4,100
					Wind: 10 / 8,400 * 4,100
					Storage: -10 / 8,400 * 4,100
Individual Resource ELCC Credit	MW	30	25	85	Last-In ELCC + Individual Resource ELCC Adjustment
					Solar: 10 + 20
					Wind: 20 + 5
					Storage: 90 – 5
Individual Resource ELCC Credit	%	30%	25%	85%	

Energy+Environmental Economics

https://www.pjm.com/-/media/committees-groups/task-forces/ccstf/2020/20200807/20200807-item-04-e3-allocating-elccmw-from-portfolio-to-classes.ashx

19

Contingency Method for Allocating PortfolioELCCMW to

- From E3:
 - "First-In ELCC: the marginal ELCC of each individual resource in a portfolio with no other variable or use-limited resources"
 - "Last-In ELCC: the marginal ELCC of each individual resource when taken in the context of the full portfolio"
- In the event that the Delta Method presents implementation challenges, PJM proposes to instead use a simple average of the "First-in ClassELCCMW" and the "Last-in ClassELCCMW" for calculating the ELCCMW of each class.

Classes

Apjm

Facilitator: Melissa Pilong, Melissa.Pilong@pjm.com

Secretary: Jaclynn Lukach, Jaclynn.Lukach@pjm.com

SME/Presenter: Andrew Levitt, Andrew.Levitt@pjm.com

PJM Proposal for Using E3 "Delta" Method for Allocating PortfolioELCCMW to ClassELCCMW

