

Forecast Methodology Updates

Load Analysis Subcommittee November 9, 2021

Andrew Gledhill Sr. Analyst Resource Adequacy Planning

* Summer weather parameter is a weighted combination of daily Max THI, average afternoon THI, average morning THI, and average THI lagged 1 day

From 9/3 LAS Cooling Overview

- Segments of spline are modeled against Cool index produced by Sector model process.
- Cooling response in the model changes over time to reflect the evolving state of economic and end-use factors (saturation/efficiency of cooling).

From 9/3 LAS Cooling Spline – Load vs Weather

Updates to Weather Treatment

- Splines are modeled against XCool, which is Cool index produced by sector model process multiplied with weather
 - As of 9/3
 - For each spline segment
 - Segment is solved at average weather
 - One segment per forecast year
 - Now
 - For each spline segment
 - Multiple segments per forecast year representing the years in the weather simulation

Cooling Splines Example

Each forecast year for each zone has a set of weather responses that vary by weather simulation year.

* Summer weather parameter is a weighted combination of daily Max THI, average afternoon THI, average morning THI, and average THI lagged 1 day

- Weather splines are included in the final model to derive load forecast distributions.
 - At October 4th LAS, splines interacted with weather were included on the right hand side of the equation and the model was allowed to determine the coefficient. Ideally want a coefficient equal to 1.0, though some zones strayed from this and this impacted forecasts.
 - Now, splines are interacted with weather but are used to decrement the left hand side. In other words, load is reduced by weather response in the estimation and then gets re-constituted in the forecast. This fixes the coefficient to 1.0.

* This is not an official forecast, it reflects the impacts of the changes discussed.

www.pjm.com | Public

Final Thoughts

- Trend variable
 - Forecasts show trend variable through entire forecast time period. Per stakeholder discussion, thinking remains to likely cut off trend at some forecast period (i.e. 5 years out).
- This, along with other materials presented at two prior LAS meetings, summarize methodology changes expected to be implemented for 2022 Load Forecast. Please provide any additional comments ASAP.

SME/Presenter: Andrew Gledhill, Andrew.Gledhill@pjm.com Load_Analysis_Team@pjm.com

Forecast Methodology

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com