PJM RENEWABLE INTEGRATION STUDY WIND & SOLAR DATA DEVELOPMENT

FINAL PRESENTATION

463 NEW KARNER ROAD | ALBANY, NY 12205 awstruepower.com | info@awstruepower.com

AWS Truepower Project Goals

Develop synthetic power output profiles and power forecasts for theoretical wind and solar generating facilities.

- Modeled Numerical Weather Prediction data from the (Eastern Wind Integration and Transmission Study¹ (EWITS) was used as input.
- Theoretical wind and solar power plants within the PJM interconnection region were obtained with objective site selection process.
- Wind power output for onshore and offshore sites was computed using a composite of current industry standard power curves.
- Solar power output for centralized and distributed scale sites is based on current technology types and commercially available PV modules.
- Four-hour, six-hour, and next-day wind and solar power forecasts were developed using state-of-art synthetic forecasting tools.
- All results have been validated against several observed measurements.

Wind Study Assumptions

- Hypothetical wind farm locations and wind simulations from EWITS study are within PJM Renewable Resource Boundary
- Onshore and Offshore wind sites avoid exclusion (no build) areas
- PJM queue sites modeled at EWITS location with queue capacity
- Convert wind to 10 minute power output using updated composite turbine power curve
- Simulate wind power forecast for each hypothetical wind farm

Wind Study Map – Onshore & Offshore

PJM Renewable Resource Boundary and hypothetical wind sites

Wind Study Data Summary

State by state table summary of hypothetical wind farm capacity

	Onshore		Offshore		Queue		Total	
State	Count	GW	Count	GW	Count	GW	Count	GW
DE	7	1.02	111	2.22	1	0.45	119	3.69
IA	1	0.30	33	0.66	0	0.00	34	0.96
IL	63	35.45	3	0.06	71	12.58	137	48.10
IN	58	29.78	-	-	34	7.31	92	37.09
КҮ	6	1.49	-	-	1	0.06	7	1.55
MD	9	1.11	354	7.08	8	0.72	371	8.91
МІ	14	5.96	18	0.36	6	1.17	38	7.49
NJ	8	1.33	657	13.14	4	0.39	669	14.86
NC	4	0.48	1385	27.70	0	0.00	1389	28.18
ОН	34	17.45	606	12.12	42	7.41	682	36.97
PA	56	6.99	123	2.46	67	8.92	246	18.36
TN	1	0.10	-	-	0	0.00	1	0.10
VA	16	2.10	979	19.58	6	0.48	1001	22.16
WI	7	2.20	-	-	0	0.00	7	2.20
WV	18	2.38	-	-	14	1.50	32	3.87
Total	302	108.12	4269	85.38	254	40.99	4825	234.49

Wind Data Validation – Power Output

- Eight wind power plants were simulated using actual turbine layouts, power curves, and plant size²
- Good agreement between simulated and actual power plant profiles
- Total bias between stations of approx. 4.7%

©2011 AWS Truepower, LLC

² Observations (2009-2011) do not coincide with delivered datasets (2004-2006).

Wind Data Validation – Power Output

- Modeled versus observed wind power ramp frequency
- Power spectral density

Wind Data Validation – Forecasts

Synthetic forecasts compare well against actual forecasts across all stations

Next Day Forecast	Correlation (r ²)		RMS Foreca	st Error (CF)	MA Forecast Error (CF)	
	Actual	SynFcst	Actual	Synfcst	Actual	Synfcst
Mean	0.770	0.739	0.193	0.196	0.133	0.144
Min	0.681	0.636	0.148	0.149	0.099	0.106
Max	0.826	0.813	0.234	0.238	0.167	0.180
Standard						
deviation	0.042	0.050	0.023	0.025	0.017	0.020

• Autocorrelation of forecasts are similar for both actual and synthetic

Time Shift (h)	Observed	PJM	Synfcst	PJM Error	Synfcst Error
0	1	1	1	1	1
1	0.944	0.980	0.959	0.890	0.921
2	0.875	0.946	0.924	0.769	0.842
3	0.814	0.906	0.888	0.674	0.772
4	0.756	0.863	0.852	0.600	0.706
5	0.700	0.820	0.817	0.536	0.644
6	0.647	0.776	0.784	0.484	0.589
7	0.598	0.733	0.751	0.437	0.535
8	0.552	0.691	0.719	0.399	0.487

Wind Data Validation – Forecasts

- Synthetic forecasts tend to be less correlated in space than actual forecasts
- The errors correlate very similarly in space
- Gives confidence in the synthetic forecast's ability to predict system wide power generation with correct spatial distribution

▲ Forecast × Errors ◆ Power

Wind Data Validation – Forecasts

Actual Forecast

Synthetic Forecast

Solar Study Assumptions - Centralized

- Assumptions used to create the hypothetical solar utility sites
 - Sites screened by capacity factor
 - Gross power density of 45 MW/km²
 - Sites range in capacity from 1-100 MW
 - Minimum 10-25 km separation between sites
- Queue sites modeled at planned capacity and location
- Exclusions similar to wind sites
- Irradiance simulations from EWITS study
- Convert irradiance to 10-minute power output using composite fixed thin film solar PV panels tilted to latitude and single axis tracking mono-crystalline PV panels tilted to latitude
- Simulate solar power forecast for each hypothetical solar facility

Solar Study Map – Centralized

PJM Service Territory and hypothetical centralized solar sites

Where science delivers performance

Solar Study – Centralized Data Summary

State by state table summary of hypothetical centralized solar site capacity

	Plants in	Queue	Projected	Projected	Total
State	Queue	Capacity	Plants	Capacity	Plants
Delaware	1	0.01	15	0.47	16
District of Columbia	0	0.00	0	0.00	0
Illinois	4	0.05	123	5.78	127
Indiana	0	0.00	68	2.82	68
Kentucky	0	0.00	50	1.41	50
Maryland	9	0.12	73	2.27	82
Michigan	0	0.00	22	0.99	22
North Carolina	4	0.07	70	2.54	74
New Jersey	265	2.67	49	1.09	314
Ohio	14	0.22	364	18.45	378
Pennsylvania	47	0.76	409	11.76	456
Tennessee	0	0.00	2	0.08	2
Virginia	10	0.19	300	11.51	310
West Virginia	0	0.00	200	4.63	200
Total	354	4.08	1745	63.81	2099

Solar Study Assumptions - Distributed

- Assumptions used to create the hypothetical distributed (rooftop) solar data
 - Commercial NLCD Classification: high-intensity; fixed panels tilted to latitude and south facing
 - Residential NLCD Classification: medium-intensity; fixed, mix of tilt and azimuths
- Queue sites modeled at planned capacity and location
- Hypothetical solar facility locations require new analysis
 - Commercial distributed (250-1000 kW)
 - Residential distributed (1-10 kW)
- Irradiance simulations from EWITS study
- Convert irradiance to 10-minute power output using composite solar technology efficiencies
 - Commercial: fixed panel mono-crystalline PV tilted to latitude
 - Residential: fixed panel mono-crystalline PV mixed azimuth and tilt
- Simulate distributed solar power forecast for each city included in study

Solar Study – Distributed

Map of PJM Service Territory and cities with distributed solar

Where science delivers performance

Solar Study – Distributed

State by state table summary of hypothetical distributed solar site capacity

State	#	Residen	tial	Commercial		Rooftop	Total
	Cities	GW	%	GW	%	Target (70%)	GW
Delaware	8	0.23	39%	0.36	61%	0.36	0.59
District of	1	0.30	16%	1.58	84%	0.03	1.89
Columbia							
Illinois	91	1.61	16%	8.47	84%	1.27	10.08
Indiana	27	0.12	13%	0.86	87%	0.00	0.98
Kentucky	6	0.03	18%	0.16	82%	0.00	0.19
Maryland	44	0.90	26%	2.58	74%	1.12	3.48
Michigan	17	0.02	15%	0.11	85%	0.00	0.13
North Carolina	24	0.04	22%	0.16	78%	0.01	0.20
New Jersey	99	4.06	31%	8.98	69%	3.54	13.04
Ohio	201	1.39	18%	6.38	82%	0.66	7.77
Pennsylvania	285	1.22	13%	8.44	87%	0.64	9.66
Tennessee	2	0.00	19%	0.00	81%	0.00	0.00
Virginia	91	0.42	13%	2.73	87%	0.00	3.16
West Virginia	52	0.10	15%	0.56	85%	0.00	0.67
Total	948	10.47	20%	41.38	80%	7.64	51.85

Solar Data Validation – Power Output

- Modeled Global Horizontal Irradiance contains almost no bias compared to measurement stations in the PJM region
- Ramp distribution matches well; modeled is slightly more variable

Solar Data Validation – Forecasts

- Autocorrelation of synthetic forecast very similar actual forecast
- Solar irradiance displays anti-correlation for time lags of greater than six hour

Autocorrelation of observed, forecast, and errors

Solar Data Validation – Forecasts

- Similar trend to the wind power forecasts
- Synthetic forecasts are slightly less correlated in space than actual forecasts
- The correlation of errors match very well compared to the actual
- Correlations are much less dependent on distance as compared to wind

