

# Virtual Workshop on Combined Cycle Modeling \*\*\*\*REVISION #2\*\*\*\*

June 24<sup>th</sup>, 2005

<u>1/19/2012©2005</u> PJM





- Overview of the Combined Cycle Model
- Modeling Combined Cycle Units
- Next Steps
- eMKT Overview





- Overview of the Combined Cycle Model
- Modeling Combined Cycle Units
- Next Steps
- eMKT Overview





- First Functioning Model used in the Industry
- Evolving technology
- With the existing model, combined cycle plants must be modeled as composite units
- Existing model creates many problems for participants since these plants have many operational constraints that cannot be captured using the composite representation



- Restricted operating ranges for each configuration
- Minimum up and down time requirements for individual components
- Correct representation of start up cost for each component
- Ramping constraints that may be dependent on individual component limits



- Each Physical component of the plant is modeled and has all the normal unit constraints
- Each Combustion turbine and each Steam turbine can have its own startup cost, minimum up/down time, cost curves etc.
- Optional field that enforces a minimum time between startups for all the CTs in the plant
- The Steam output is a function of the CT output
- There is a field to indicate if unit should be modeled as simple cycle.
- The Steam Unit can only be committed if at least one CT is committed





- Overview of the Combined Cycle Model
- Modeling Combined Cycle Units
- eMKT Overview
- Next Steps



# Modeling Combined Cycles









# **Production Cost Example - Input**

| Data Elements                  |                | CT 1      | C           | CT 2           | St        | eam   |
|--------------------------------|----------------|-----------|-------------|----------------|-----------|-------|
| Hot Start Price                |                |           |             |                |           |       |
| Inter Start Price              |                |           |             |                |           |       |
| Cold Start Price               | <del>4</del> 9 | 64,000    | \$          | 4,000          |           |       |
| Hourly No-Load                 |                | *****CT'S | S CANNOT SU | BMIT NO-LOAD C | OSTS***** |       |
| CT Factor                      |                |           |             |                |           | 50    |
| Offer Curve<br>(max 10 points) | MW             | Price     | MW          | Price          | MW        | Price |
| segment 1                      | 100            | \$ 55     | 100         | \$ 70          | 0         | \$0   |
| segment 2                      | 150            | \$ 80     | 150         | \$ 90          | 0         | \$0   |
| Eco Min MW                     |                | 100       |             | 100            |           | 100   |
| Eco Max MW                     |                | 150       |             | 150            |           | 150   |
| Min Run Time                   | 4              | hours     | 4           | hours          | 8 I       | nours |
| Use Start Up No Load           |                | Yes       |             | Yes            |           | Yes   |
| Use Offer Slope                |                | No        |             | No             |           | No    |







#### **Combined Cost (Incremental) Curve**

| Data Elements   | Combined Output           | Production Costs                                                     | Rate<br>Calculation | Rate    |
|-----------------|---------------------------|----------------------------------------------------------------------|---------------------|---------|
| segment 1 (Min) | 100 (CT1) + 50 (ST) =150  | \$55 * 100 MW = \$5,500                                              | \$5,500/150 MW      | \$36.70 |
| segment 2 (Max) | 150 (CT1) + 75 (ST) = 225 | \$55 *100 MW = \$ 5,500<br>\$80 * 50 MW = <u>\$ 4,000</u><br>\$9,500 | \$9,500/225 MW      | \$42.22 |

#### **8 Hour Scheduling Rate**

| Data Elements   | Combined Output | Calculation                               | Rate    |
|-----------------|-----------------|-------------------------------------------|---------|
| segment 1 (Min) | 150 MW          | <u>8 (\$5,500)+ \$4,000</u><br>8(150 MW)  | \$40.00 |
| segment 2 (Max) | 225 MW          | <u>8 (\$9,500) + \$4,000</u><br>8(225 MW) | \$44.44 |





<u>Example 2</u> 2 CT + 1 ST

#### **Combined Cost (Incremental) Curve**

| Data Elements   | Combined Output                                                        | Production Costs                                                      | Rate Calculation | Rate    |
|-----------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|---------|
| segment 1 (Min) | 100 (CT1) + 50 (ST) =150<br>100 (CT2) + 50 (ST) = <u>150</u><br>300    | \$55 * 100 MW = \$5,500<br>\$70 * 100 MW = \$7,000                    | \$12,500/300 MW  | \$41.66 |
| segment 2 (Max) | 150 (CT1 ) + 75 (ST) = 225<br>150 (CT 2) + 75 (ST) = <u>225</u><br>450 | \$55 * 100 MW = \$ 5,500<br>\$80 * 50 MW = <u>\$ 4,000</u><br>\$9,500 | \$21,000/450 MW  | \$46.66 |
|                 |                                                                        | \$70 * 100 MW= \$ 7,000<br>\$90 * 50 MW = <u>\$ 4,500</u><br>\$11,500 |                  |         |

#### **8 Hour Scheduling Rate**

| Data Elements   | <b>Combined Output</b> | Calculation                                | Rate    |
|-----------------|------------------------|--------------------------------------------|---------|
| segment 1 (Min) | 300 MW                 | <u>8 (\$12,500) + \$8,000</u><br>8(300 MW) | \$45.00 |
| segment 2 (Max) | 450 MW                 | <u>8 (\$21,000) + \$8,000</u><br>8(450MW)  | \$48.88 |

1/19/2012©2005 PJM



### **Key Points**

- Individual availability can be assigned for each component in the combined cycle group, but can affect commitment
- Having Eco Max on steam Unit set to less than the Eco Min on any CT in the CC Group will result in nothing within the CC being committed
- Suggested method to model the unit is to submit offer data on the CTs, can be offered the other way





- Overview of the Combined Cycle Model
- Modeling Combined Cycle Units
- Next Steps
- eMKT Overview



- 1. Open eMKT Sandbox by July 1, 2005
- 2. Participants notify PJM if they what units they would like to test in Sandbox PJM will model units in Sandbox first
  - Contact = Gerry McNamee (610-666-8944 or <u>mcnamegd@pjm.com</u>)
  - Participants may submit and revise information in Sandbox for Testing purposes
- 3. Final Decision Made by participant

/19/2012©2005 PJN

 Go Live in eMKT Production on August 1, 2005





- Overview of the Combined Cycle Model
- Modeling Combined Cycle Units
- Next Steps
- eMKT Overview



### What's New?

- New Fields
  - CT Factor
  - Minimum Time Between Starts
  - Allow Simple Cycle
- Ability to view separate components



#### **Unit Detail Screen**

| MeSuite - Microsoft    | Internet Explorer provided by PJM Interco | nnection               |                               |          |
|------------------------|-------------------------------------------|------------------------|-------------------------------|----------|
|                        | A Asarch Generation Media                 | X R. 4                 |                               |          |
| ss 🙆 https://esuite.st | tage.pim.com./mui/index.htm               | 3   12   2   2   · · · |                               | ▼ ∂G     |
| м                      | SIIITS                                    |                        |                               | > E mail |
| pacity                 | GOULE                                     |                        | > Login > Opicad              | > E-mail |
| a                      | Unit Detail Search                        |                        |                               | Get Re   |
|                        | Portfolio:                                | Unit:                  | Date:                         |          |
| 2                      |                                           | (m                     | m/dd/yyyy) Change Date        |          |
| 5                      |                                           |                        |                               |          |
| edules                 |                                           |                        |                               |          |
| e Messages             | Unit Detail Result for                    |                        |                               |          |
| Response               | Submit                                    |                        |                               |          |
| pacity                 | Name                                      | Value                  | Name                          | value    |
| S                      | Type Of Unit                              | Industrial CT          | Plant Name                    |          |
| eSuite Tools           | Unit Number                               | 10                     | Unit Shortname                |          |
| T                      | Node                                      |                        | Operating Company             |          |
| 5                      | Capacity Resource                         | Yes                    | Regulation Resource           |          |
| Procedures             | Default Status                            | Economic               | Default Ramp Rate             | 1        |
|                        | Fixed Gen.                                | No                     |                               |          |
|                        | Emergency Min(MW)                         | 450.0                  | Emergency Max(MW)             | 52       |
|                        | Economic Min(MW)                          | 450.0                  | Economic Max(MW)              | 45       |
|                        |                                           |                        |                               |          |
|                        |                                           |                        | Spinning Max(MW)              | 45       |
| Public                 |                                           |                        |                               |          |
| Senerator              |                                           |                        |                               |          |
|                        |                                           |                        |                               |          |
| Demand                 |                                           |                        |                               |          |
| Admin                  |                                           |                        |                               |          |
|                        |                                           |                        |                               |          |
|                        | Per. 1 Cost Based Startup                 | No                     | Per. 2 Cost Based Startup     |          |
|                        | Per. 1 Hot Startup Cost(\$)               | 8550.28                | Per. 2 Hot Startup Cost(\$)   | 8221     |
|                        | Per. 1 Inter Startup Cost(\$)             | 8550.28                | Per. 2 Inter Startup Cost(\$) | 8221     |
|                        | Per. 1 Cold Startup Cost(\$)              | 10484.34               | Per. 2 Cold Startup Cost(\$)  | 9628     |
|                        | Per. 1 No Load Cost(\$)                   | (null)                 | Per. 2 No Load Cost(\$)       | (n:      |
|                        | Condense Available                        | No                     | Condense Startup Cost(\$)     | (ni      |
|                        | Condense Energy Usage(MW)                 | (null)                 | Condense To Gen Cost(\$)      | (ni      |
|                        | Condense Notification Time                | (null)                 | Condense Hourly Cost(\$)      | (nt      |
| Lines.                 | Min. Time Between Startups                | (null)                 | Allow Simple Cycle            |          |
| חוק                    | Combined Cycle Factor                     | (null)                 |                               |          |

Tructed sites

Done



### **Unit Model Changes**

"Unit modeling changes in the PJM eMKT system (unit type, aggregation level, for example), not including changes based on physical changes at the plant, can be made at the beginning of each quarter."

### PJM Manual 11, Section 2



#### Questions



1/19/2012©2005 PJM