Existing Fleet and Representative Plant Analysis

PRESENTED BY

PRESENTED TO

BRATTLE AND S&L TEAM

PJM MARKET IMPLEMENTATION COMMITTEE

NOVEMBER 11, 2022

Goals and Contents of Today's Presentation

Goals of Today's Presentation

Solicit stakeholder feedback on initial analysis

Contents

Representative plant characteristics for selected types
 Initial avoidable cost ranges for listed types

Proposed Resource Types for Existing Generation

Proposed types cover ~94% of the entire PJM fleet (in ICAP terms)

Technology Type	Total MW (Summer ICAP)	Percent of PJM Fleet Capacity	Recommendation
Natural gas CC	55,828	28%	Include
Coal	41,554	21%	Include
Single-unit nuclear	22 556	170/	Includo
Multi-unit nuclear	52,550	1770	include
Simple-cycle CT	28,496	14%	Include
Onshore wind	9,911	5%	Include
Steam oil & gas	9,240	5%	Add
Large-scale solar PV	7,790	4%	Include
Pumped storage	5,243	3%	Unit Specific
Other	3,427	2%	Unit Specific
Hydro	3,319	2%	Unit Specific

Source: Hitachi Powergrids, Velocity Suite.

Revision to Nuclear Plant CapEx Inclusions

Nuclear Gross ACR = Fixed O&M + Fixed CapEx* + Property Taxes

Fixed CapEx: In 2020, gross ACR included Regulatory, Infrastructure and IT costs, with Sustaining costs in VOM, but <u>excluded Enhancements</u> <u>altogether (Capital Spares were</u> small and were not counted in 2020 study; the tariff allows including them in VOM adders)

Including Enhancements adds ~\$2.17/MWh (\$48/MW-day) to Gross ACR for single- and multiunit nuclear plants

Existing Multi-Unit Nuclear Plants

Population characteristics

∞ Most plants are 1,900 – 2,800 MW

>>> Most capacity in IL and PA

≥ 34 – 52 years of operations

Primary drivers of cost variability

>>> Market revenue structure: wholesale vs cost of service

∞ Reactor type: pressurized water or boiling water

>>> Operator's fleet size: single or multiple plants

Multi-Unit Nuclear Characteristics and Costs in 2022

Low Cost Representative Plant	Representative Plant \$413 - \$513/MW-day (\$18.50-\$23/MWh)* compare to \$445/MW-day in 2020	High Cost Representative Plant
•2,400 MW (2 x 1,200 MW)	•2,400 MW (2 x 1,200 MW)	•2,400 MW (2 x 1,200 MW)
 Pressurized Water Reactor 	 Boiling Water Reactor 	 Boiling Water Reactor
• Virginia	•Illinois	•Illinois
•47 years old	•44 years old	•44 years old
•Operator with multiple plants	 Operator with multiple plants 	•Operator with single plant

*This is before adding property taxes of approx. \$17/MW-day (\$0.77/MWh)

We will also provide alternative Gross ACRs *including Major Maintenance costs*, which will add approx. \$46/MW-day (\$2.06/MWh) of "Sustaining CapEx" and \$1.3/MW-day (\$0.06/MWh) of "Capital Spares"

brattle.com | 4

Multi-Unit Nuclear Fleet

Existing Single-Unit Nuclear Plants

Population characteristics

∞ Only 2 in PJM, both in Ohio

≥ 1,000 – 1,300 MW

≥ 34 – 44 years of operations

Primary drivers of cost variability

Market revenue structure: wholesale vs cost of service
 Reactor type: pressurized water or boiling water
 Operator's fleet size: single or multiple plants

Single-Unit Nuclear Characteristics and Costs in 2022		
Low Cost Representative Plant	Representative Plant \$491-\$614/MW-day (\$22-\$27.50/MWh)* compare to \$697/MW-day in 2020	High Cost Representative Plant
 Only 2 plants in PJM Too few units to estimate a range 	 1,200 MW Boiling Water Reactor Ohio 38 years old 	 Only 2 plants in PJM Too few units to estimate a range

*This is before adding property taxes of approx. \$17/MW-day (\$0.77/MWh)

We will also provide alternative Gross ACRs *including Major Maintenance costs*, which will add about \$46/MW-day (\$2.06/MWh) of "Sustaining CapEx" and \$1.6/MW-day (\$0.07/MWh) of "Capital Spares"

Single-Unit Nuclear Fleet

Existing Coal Plants

Population characteristics

 Wide range of capacities (mostly 250 - average is 750 MW Nearly all plants have an FGD Most capacity in WV, PA, OH Over half of coal units are 35 – 60 yea 	 - 3,000 MW); So Range of capacity, So Operating years So Capacity factor So Location 	configuration, and boiler type
Coal Characteristics and Costs in 2022		
Low Cost Representative Plant	Representative Plant \$84 - \$94.50/MW-day compare to \$80/MW-day in 2020	High Cost Representative Plant
 1,800 MW (2 x 900 MW) Appalachian coal (high sulfur) Wet limestone FGD Pennsylvania 52 years old 	 1,500 MW (2 x 750 MW) Appalachian coal (high sulfur) Wet limestone FGD Pennsylvania 52 years old 	 100 MW (1 x 100 MW) Appalachian coal (high sulfur) Wet limestone FGD West Virginia 30 years old

Primary drivers of cost variability

Existing Coal Fleet

Existing Natural Gas CC Plants

Population characteristics

Mostly built 16-20 years ago or in the past 8 years
 600–1,000 MW common in early 2000s, mostly F-class
 SCRs are common on CCs

∞ Most capacity in PA, VA, NJ, OH

Primary drivers of cost variability

Range of capacity, configuration, and turbine type
Operating years
Capacity factor
Location

Natural Gas CC Characteristics and Costs in 2022

Low Cost Representative Plant	Representative Plant \$58.50 - \$66/MW-day <i>compare to \$56/MW-day in 2020</i>	High Cost Representative Plant
 1,100 MW (2 x 550 MW) H-class turbines (2x1x1) SCR Pennsylvania 5 years old 	 750 MW F-class turbines (2x1) SCR Pennsylvania 18 years old 	 400 MW F-class turbines (1x1) SCR Virginia 30 years old

Existing Natural Gas CC Fleet

Existing Simple-Cycle CT Plants

Population characteristics

- >>> Wide range of size, number and type of turbines
- ∞ SCR not common on CTs
- ℕ Primarily built 20 to 24 years ago
- 🔊 Most capacity in IL, KY, OH, VA

Primary drivers of cost variability

Range of capacity, co-located quantity, and turbine type
Operating years
Capacity factor
Location

Simple-Cycle CT Characteristics and Costs in 2022

Low Cost Representative Plant	Representative Plant \$53 - \$58/MW-day compare to \$50/MW-day in 2020	High Cost Representative Plant
 •320 MW (2 x 160 MW) •F-class turbines •No SCR •Illinois •20 years old 	 640 MW (8 x 80 MW) E-class turbines No SCR Illinois 20 years old 	 100 MW (2 x 50 MW) LM6000 No SCR Pennsylvania 20 years old

Existing Simple-Cycle CT Fleet

Existing Solar PV Plants

Population characteristics

∞ Most capacity is <10 MW

>>> Most capacity in VA, NJ and NC

>>>> Built in past 12 years

Primary drivers of cost variability

Range of capacity, co-located quantityLocation

Solar PV Plant Characteristics and Costs in 2022

Low Cost Representative Plant	Representative Plant \$47-\$66/MW-day <i>compare to \$40/MW-day in 2020</i>	High Cost Representative Plant
 80 MW Polysilicon Single-axis tracking North Carolina 2 years old 	 10 MW Crystalline silicon Single-axis tracking New Jersey 5 years old 	 2 MW Crystalline silicon Single-axis tracking New Jersey 7 years old

Existing Solar PV Fleet

Existing Onshore Wind Plants

Population characteristics

- ≫ Wide range of sizes, average (100 MW) skewed by a few large plants (>750 MW)
- Nost capacity in IL and IN, but mainly larger plants; smaller plants mostly in PA and OH
- ∞ 5 15 years of operations

Primary drivers of cost variability

Range of capacity, co-located quantityLocation

Onshore Wind Characteristics and Costs in 2022

Low Cost Representative Plant	Representative Plant \$115 - \$151/MW-day compare to \$83/MW-day in 2020	High Cost Representative Plant
•300 MW •Illinois •10 years old	200 MWIllinois12 years old	•30 MW •Pennsylvania •12 years old

Existing Onshore Wind Fleet

Existing ST/O&G Plants

Population characteristics

- ≫ Wide range of sizes, average (277 MW) skewed by a few large plants (>200 MW)
- ≫ Most capacity in PA, but mainly larger plants; smaller plants mostly in OH and NJ
- ∞ 2 85 years of operations

Primary drivers of cost variability

80 TBD

ST/O&G Characteristics		
Low Cost Representative Plant	Representative Plant (In Progress)	High Cost Representative Plant
1,300 MWPennsylvania47 years old	900 MWPennsylvania47 years old	•350 MW •Pennsylvania •65 years old

Existing ST O&G Fleet

NEXT STEPS

Next Steps

>>>Identify any additional resource types or changes to Gross ACR estimation approach

₻Finalize Gross ACR costs

THE POWER OF ECONOMICS

BRATTLE.COM

