Quadrennial Review of VRR Curve Parameters

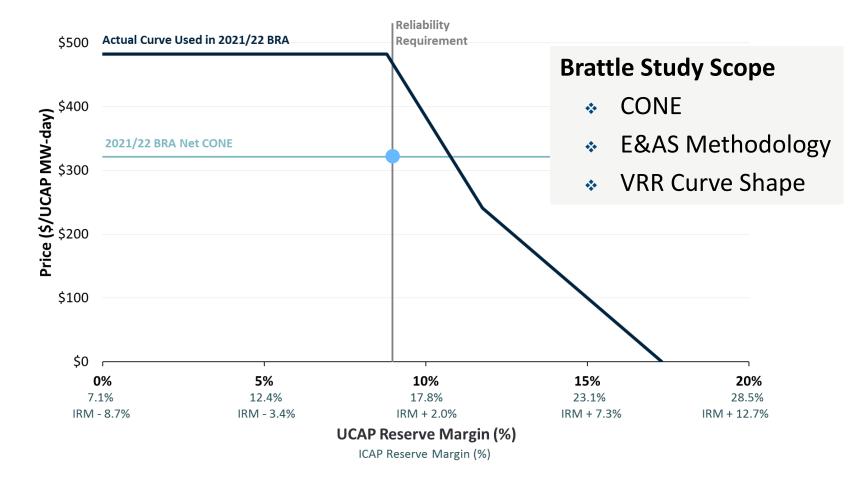
PRESENTED TO

PJM Market Implementation Committee

PRESENTED BY

Samuel Newell David Luke Oates J. Michael Hagerty John Imon Pedtke Emily Shorin Perry Fitz

April 25, 2018



Contents

- Executive Summary
- CONE Study
- E&AS Methodology and Indicative Net CONE
- Assessment of VRR Curve Shape

Executive Summary Background and Scope of Work

Current System VRR Curve

Executive Summary CONE Study Results

Updated RTO CONE Estimates (\$/ICAP MW-year)

	СТ	СС
2021/22 Auction Parameter	\$135,309	\$186,186
Escalated to 2022/23	\$139,100	\$191,400
Updated 2022/23 CONE	\$104,200	\$114,400
Difference from Prior CONE	-25%	-40%

Source and notes:

Average across all CONE Areas. Table ES-1 of PJM 2018 CONE Study.

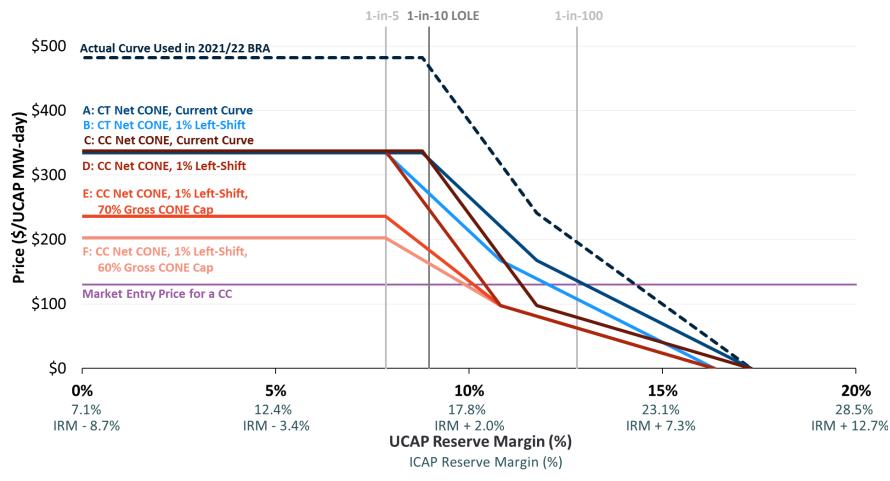
Executive Summary E&AS Revenue Offset Takeaways

Tariff-mandated historical E&AS approach is reasonable

We recommend several refinements:

- Update representative gas hubs for 6 zones
- Update operating characteristics
- Include gas balancing cost adder for CTs
- Add net Capacity Performance payments
- Calculate E&AS margins for RTO and other multi-zone LDAs based on median across zones

Developed forward-looking approach for CC E&AS offsets


Executive Summary Indicative RTO Net CONE

		2021/22 BRA	2022/23 Brat	tle Estimate
		СТ	СТ	СС
Gross CONE	\$/MW-year ICAP	\$135,300	\$104,200	\$114,400
E&AS Margin	\$/MW-year ICAP	\$24,800	\$28,400	\$70,600
Net CONE	\$/MW-year ICAP	\$110,500	\$75,800	\$43,800
Net CONE	\$/MW-day UCAP	\$322	\$222	\$129

Sources:

VRR Curve Report, Table ES-1.

Executive Summary VRR Curve Evaluation

Source and Notes:

VRR Curve Report, Figure ES-1.

Current VRR curve parameters taken from 2021/22 BRA parameters.

Executive Summary VRR Curve Conclusions

Candidate Curves' Simulated Performance in Long-Run Equilibrium

	Average	Avera	ge LOLE	Cost Savings
	Excess over	Base	Stress	vs. Curve A
	IRM	Conditions	Conditions*	
	(IRM + X%)	(Ev/Yr)	(Ev/Yr)	(\$m/Yr)
CT as Reference Technology				
A: Current Curve	4.3%	0.01	0.02	-
B: 1% Left-Shift	3.3%	0.02	0.04	\$74
CC as Reference Technology				
C: Current Curve	2.8%	0.03	0.05	\$100
D: 1% Left-Shift	1.8%	0.05	0.07	\$171
E: 1% Left-Shift, 70% CONE Cap	1.4%	0.07	0.16	\$212
F: 1% Left-Shift, 60% CONE Cap	1.1%	0.09	0.33	\$233

Source and Notes:

VRR Curve Report, Table 11. Current VRR curve parameters taken from 2021/22 BRA parameters.

* "Stress Conditions" assume the realized market entry price is 20% higher than we estimated.

Contents

- Executive Summary
- CONE Study
- E&AS Methodology and Indicative Net CONE
- Assessment of VRR Curve Shape

CONE Study Updated Technical Specifications

Plant Characteristic	Combustion Turbine	Combined Cycle
Turbine Model	7HA.02	7HA.02
Configuration	1x0	2x1
Power Augmentation	Evaporative Cooling, no inlet chillers	Evaporative Cooling, no inlet chillers
CC Supplemental Firing		+125 MW (+13%)
CC Cooling System		Cooling Towers
Fuel Supply	Dual Fuel	Dual Fuel, except in SWMAAC (firm gas)
Environmental Controls	SCR and CO Catalyst, except Rest of RTO	SCR and CO Catalyst
Net Summer ICAP	321 – 355 MW	1,126 – 1,160 MW
Net Heat Rate (HHV)	9,221 – 9,274 Btu/kWh	6,295 – 6,312 Btu/kWh

Sources and notes: PJM 2018 CONE Study, Table 4 and Table 5. Net Summer ICAP and Net Heat Rate based on average summer ambient conditions. CC ICAP is with duct firing and net heat rate is without duct firing (adds about 240 Btu/kWh).

CONE Study Updated Cost of Capital

ATWACC now 7.5% vs. 8.0% in 2014 review

Prior to tax reform, market data indicated 7.0% ATWACC

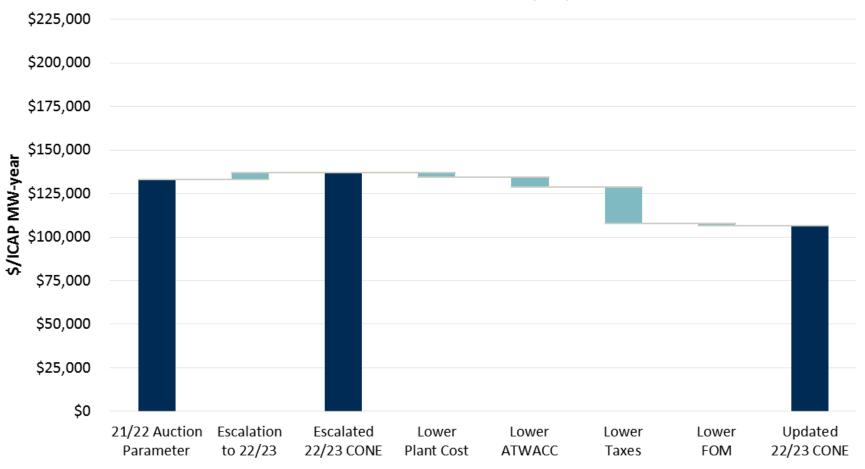
- Publicly-traded merchant generation companies (5.4% to 6.5%)
- Sensitivities for alternative risk-free rates and cost of debt (4.8% to 7.0%)
- Recent fairness opinion discount rates (5.8% to 7.3%)
- Qualitative adjustment for relative risk of merchant plant

Adjusted for lower tax rates, ATWACC increases to 7.5%

	Prior to 2017 Tax Reform	Adjusted for 2017 Tax Reform
Combined Tax Rate	40.5%	29.5%
Debt Ratio	65%	65%
Cost of Debt	6.5%	6.5%
Return on Equity	12.8%	12.8%
ATWACC	7.0%	7.5%

 $ATWACC = ROE \times \% Equity + COD \times \% Debt \times (1 - Tax Rate)$

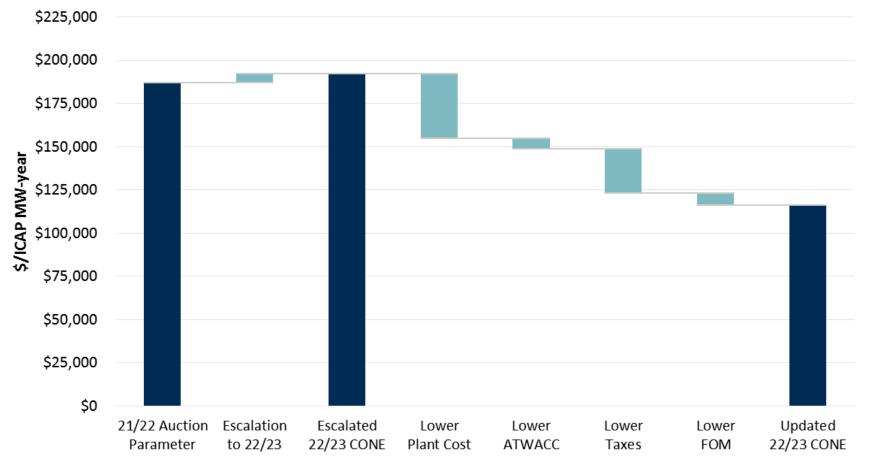
CONE Study Updated CONE Calculations


		Simple Cycle				
		EMAAC	SWMAAC	Rest of RTO	WMAAC	
Net Summer ICAP	MW	352	355	321	344	
Overnight Costs	\$/kW	\$898	\$836	\$799	\$886	
Effective Charge Rate	%	10.1%	10.1%	10.0%	10.0%	
Plant Costs	\$/MW-yr	\$90,300	\$84,300	\$80,300	\$88,900	
Fixed O&M	\$/MW-yr	\$16,100	\$24,100	\$17,900	\$14,900	
Levelized CONE	\$/MW-yr	\$106,400	\$108,400	\$98,200	\$103,800	
Levelized CONE	\$/MW-day	\$292	\$297	\$269	\$284	

		Combined Cycle				
		EMAAC	SWMAAC	Rest of RTO	WMAAC	
Net Summer ICAP	MW	1,152	1,160	1,138	1,126	
Overnight Costs	\$/kW	\$873	\$772	\$815	\$853	
Effective Charge Rate	%	10.6%	10.6%	10.5%	10.5%	
Plant Costs	\$/MW-yr	\$92,200	\$81,800	\$85,900	\$89,900	
Fixed O&M	\$/MW-yr	\$23,800	\$38,400	\$23,900	\$21,900	
Levelized CONE	\$/MW-yr	\$116,000	\$120,200	\$109,800	\$111,800	
Levelized CONE	\$/MW-day	\$318	\$329	\$301	\$306	

Source and notes: PJM 2018 CONE Study, Table ES-2 and Table ES-3. All capacity values are ICAP.

CONE Study Change in EMAAC CT CONE from 2014 Study


Combustion Turbine (CT)

Source: PJM 2018 CONE Study, Figure ES-1a.

CONE Study Change in EMAAC CC CONE from 2014 Study

Combined Cycle (CC)

Source: PJM 2018 CONE Study, Figure ES-1b.

CONE Study Annual CONE Updates

Continue to escalate CONE with composite cost index prior to each BRA

- Still use BLS turbine, material, and labor indices
- Shift weighting to reflect updated capital costs components

Add adjustment of +2%/year for annual decline in bonus depreciation

Contents

- Executive Summary
- CONE Study
- E&AS Methodology and Indicative Net CONE
- Assessment of VRR Curve Shape

E&AS and Indicative Net CONE Approach to Evaluating E&AS Methodology

Evaluated tariff-mandated historical approach

- Reasonableness of cost assumptions
- Comparison to IMM's approach
- Comparison to representative units' actual margins

Considered forward-looking approach

Evaluated approach to RTO and multi-zone LDA estimate

E&AS and Indicative Net CONE Comparison to Representative Units' Margins

Simulated CC energy margins (blue circles) generally fall within range of representative existing unit net revenues (teal bars)

CC Net Energy Revenues

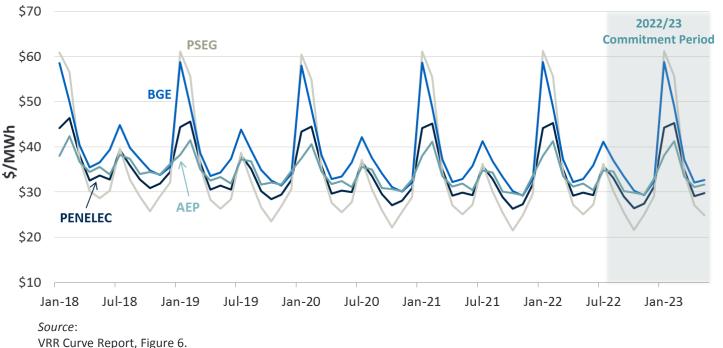
Source: VRR Curve Report, Figure 2.

But for CTs, too few representative existing units to compare

E&AS and Indicative Net CONE Refinements to Current E&AS Approach

Inputs to tariff-mandated historical simulations:

- Update gas trading hubs for 6 zones
- Update unit characteristics (heat rate, VOM) based on CONE Study
- Add gas balancing costs for CTs, e.g., by applying 10% adder


Add net Capacity Performance payments

Use median E&AS margin for the RTO and multi-zone LDAs

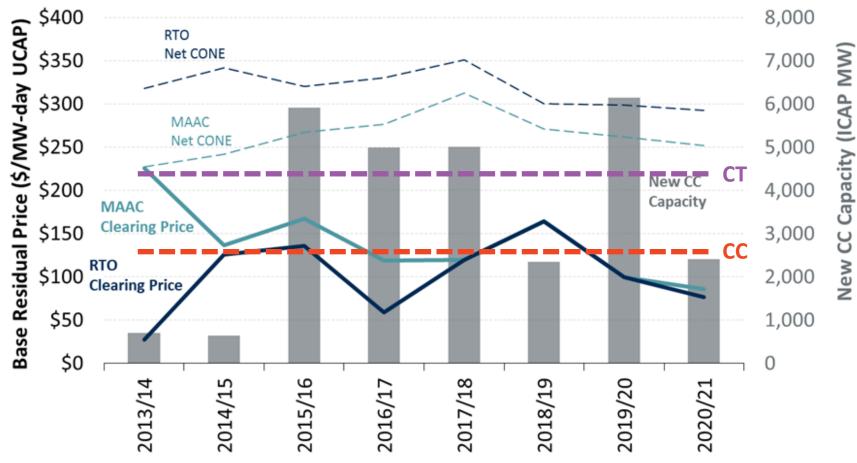
E&AS and Indicative Net CONE CC Forward-Looking Approach

Forward-looking E&AS approach better represents developer's expectation for E&AS margins and reduces volatility of Net CONE

- CC margins reasonably approximated by on-peak 5x16 futures; not the case for CTs
- Key is having reasonable, market-based electricity and gas prices 3 years forward
- Forward-looking CC margins are lower than 2015-2017 average in most zones

Projected Monthly Electricity Prices (\$/MWh)

19 | brattle.com


EA&S and Indicative Net CONE Indicative RTO Net CONE

		2021/22 BRA	2022/23 Brat	tle Estimate
		СТ	СТ	СС
Gross CONE	\$/MW-year ICAP	\$135,300	\$104,200	\$114,400
E&AS Margin	\$/MW-year ICAP	\$24,800	\$28,400	\$70,600
Net CONE	\$/MW-year ICAP	\$110,500	\$75,800	\$43,800
Net CONE	\$/MW-day UCAP	\$322	\$222	\$129

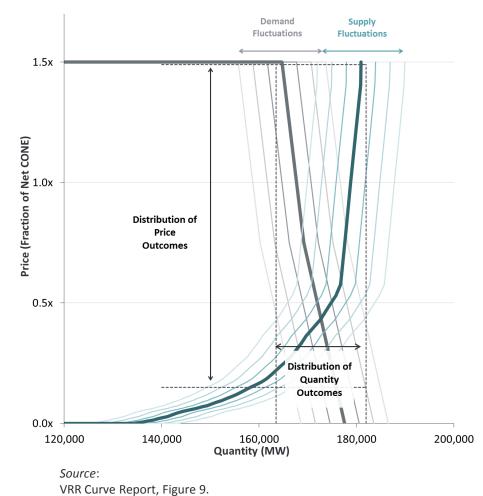
Sources:

VRR Curve Report, Table ES-1.

E&AS and Indicative Net CONE Comparison to Recent Market Outcomes

Recent BRA Clearing Prices and Cleared New CC Capacity

Source: VRR Curve Report, Figure 8.

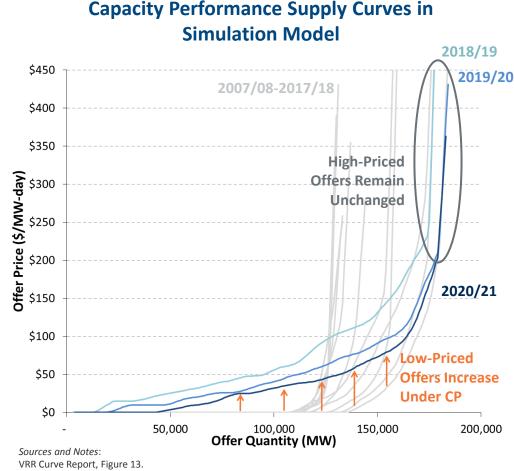

Contents

- Executive Summary
- CONE Study
- E&AS Methodology and Indicative Net CONE
- Assessment of VRR Curve Shape

Assessment of VRR Curve Shape Simulation Model Overview

- Inputs: locational supply and demand curves and transmission parameters
- Outputs: price, quantity, and reliability
- Model Engine: locational market clearing engine generates prices and quantities
- Monte Carlo Simulations: uses a range of realistic "fluctuations" in supply, demand, and imports
- Equilibrium condition: long-run average price equals Net CONE

Stylized Supply and Demand Fluctuations

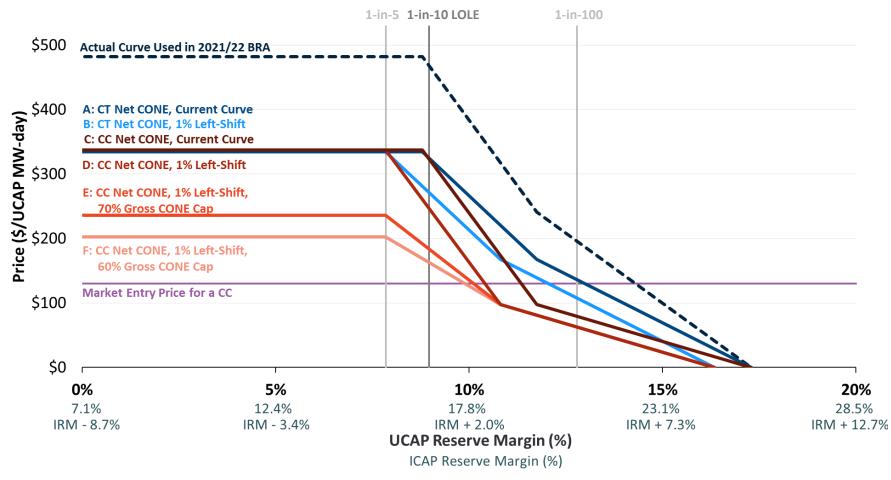


Assessment of VRR Curve Shape Supply Curves Under Capacity Performance

Capacity Performance has altered the low-price portion of the supply curve

- Higher Offer Prices: a capacity obligation implies a short position on performance and a minimum offer price
- Range of Offer Prices: reflect market's range of expectations about performance hours (H)

Supply curves in our simulations reflect this



Average H and diversity of expectations in H derived using supply curve data provided by PJM.

Assessment of VRR Curve Shape Other Simulation Model Inputs

- Administratively Defined VRR Curve: shape, reliability requirement, and reference technology Net CONE
- Market Entry Price: indicative CC Net CONE estimate
- Import Limits: based on 2020/21 BRA parameters
- Fluctuations: informed by historical variability in supply, demand, and transmission

Assessment of VRR Curve Shape Candidate Curves

Source and Notes:

VRR Curve Report, Figure ES-1.

Current VRR curve parameters taken from 2021/22 BRA parameters.

Assessment of VRR Curve Shape Performance of Candidate Curves

Curve E strikes a balance across design objectives

All Results Assume Market Entry Price = CC Net CONE

	Admin Net CONE	Admin Net CONE Price and Procurement Costs Reliability								
	A	Avg. Price	Standard	Average	Average	Stress	Average	Reserve	Frequency	Frequency
		•	Deviation		LOLE	LOLE *	Excess	Margin	Below	Below
		Entry Price)	of Price	(P × Q)			(Deficit)	Standard Deviation	Reliability Requirement	1-in-5
	(\$/MW-d)	(\$/MW-d)	(\$/MW-d)	(\$mil)	(Ev/Yr)	(Ev/Yr)	(IRM + X%)	(% ICAP)	(%)	(%)
CT as Reference Technology						1				
A: Current Curve	\$222	\$129	\$34	\$8,139	0.011	0.023	4.3%	1.1%	0%	0%
B: 1% Left-Shift	\$222	\$129	\$34	\$8 <i>,</i> 065	0.023	0.041	3.3%	1.1%	0%	0%
CC as Reference Technology										
C: Current Curve	\$129	\$129	\$58	\$8,039	0.031	0.046	2.8%	1.1%	1%	0%
D: 1% Left-Shift	\$129	\$129	\$58	\$7,969	0.053	0.072	1.8%	1.1%	5%	0%
E: 1% Left-Shift, 70% Gross CONE Cap	\$129	\$129	\$50	\$7,927	0.071	0.163	1.4%	1.5%	15%	4%
F: 1% Left-Shift, 60% Gross CONE Cap	\$129	\$129	\$46	\$7,906	0.091	0.331	1.1%	1.7%	20%	6%

All curves exceed

1-in-10 standard

Downward and leftshifted curves reduce customer costs (2.6% for curve E)

Under stress conditions, curve with 60% gross CONE cap performs poorly Recommended curve reliability performance is comparable to PJM's right-shifted curve in our 2014 Review

Sources and Notes:

VRR Curve Report, Table 11. Current VRR curve parameters taken from 2021/22 BRA parameters.

* "Stress LOLE" assumes the market entry price is 20% higher than the value used to anchor the VRR curve.

27 | brattle.com

Assessment of VRR Curve Shape VRR Curve Takeaways

CC entry is available at low cost, supporting VRR curve performance

We therefore recommend that PJM consider adopting a CC-based VRR curve with two additional changes (curve E):

- **Left-shift by 1%** since main rationale for the right-shift in 2014 no longer applies
- Reduce alternative price cap to 70% of Gross CONE to avoid excess procurement with CCs' high E&AS almost always triggering the alternative price cap

These changes would satisfy reliability objectives and save > \$ 200 million annually relative to simply updating the current CT-based curve

Other considerations for adopting CC as Reference Technology:

- Estimation error is lower than for CT
- Year-to-year variability in Net CONE parameter mitigated by forward E&AS
- Low risk that CC is only a temporarily lower cost resource

Assessment of VRR Curve Shape VRR Curves in the LDAs

No matter which candidate curve PJM adopts, translating it to the LDAs will support reliability under current conditions

If PJM selects curves E or F, it should *consider* a minimum local curve width of 25% of CETL to protect against:

- Higher variability in supply and demand than the RTO on a % basis,
- Volatility in the import limit contributing to greater net supply variability, and
- Potential future conditions where import limits are binding and LDAs have higher market entry price than their parents

Contact Information

SAMUEL NEWELL

Principal | Boston, MA Sam.Newell@brattle.com +1.617.234.5725

MICHAEL J. HAGERTY

Senior Associate | Washington, DC Michael.Hagerty@brattle.com +1.202.419.3323

DAVID LUKE OATES Associate | Boston, MA DavidLuke.Oates@brattle.com +1.617.234.5212

The views expressed in this presentation are strictly those of the presenter(s) and do not necessarily state or reflect the views of The Brattle Group, Inc.

About The Brattle Group

The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governmental agencies worldwide.

We combine in-depth industry experience and rigorous analyses to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

Our services to the electric power industry include:

- Climate Change Policy and Planning
- Cost of Capital
- Demand Forecasting Methodology
- Demand Response and Energy Efficiency
- Electricity Market Modeling
- Energy Asset Valuation
- Energy Contract Litigation
- Environmental Compliance
- Fuel and Power Procurement
- Incentive Regulation

- Rate Design and Cost Allocation
- Regulatory Strategy and Litigation Support
- Renewables
- Resource Planning
- Retail Access and Restructuring
- Risk Management
- Market-Based Rates
- Market Design and Competitive Analysis
- Mergers and Acquisitions
- Transmission

Offices

BOSTON

WASHINGTON, DC

MADRID

ROME

LONDON

Detailed Cost Estimates

Plant Capital Cost Estimates

Combustion Turbine (CT)

	CONE Area					
	1	2	3	4		
	EMAAC	SWMAAC	Rest of RTO	WMAAC		
Capital Costs (in \$millions)	352 MW	355 MW	321 MW	344 MW		
Owner Furnished Equipment						
Gas Turbines	\$74.4	\$74.4	\$74.4	\$74.4		
SCR	\$26.6	\$26.6	\$0.0	\$26.6		
Sales Tax	\$6.7	\$6.1	\$4.7	\$6.4		
Total Owner Furnished Equipment	\$107.7	\$107.1	\$79.1	\$107.4		
EPC Costs						
Equipment						
Other Equipment	\$25.7	\$25.6	\$28.5	\$25.7		
Construction Labor	\$43.5	\$31.8	\$31.0	\$37.6		
Other Labor	\$16.5	\$15.3	\$12.9	\$16.0		
Materials	\$6.6	\$6.5	\$6.5	\$6.6		
Sales Tax	\$2.1	\$1.9	\$2.2	\$2.0		
EPC Contractor Fee	\$20.2	\$18.8	\$16.0	\$19. 5		
EPC Contingency	\$22.2	\$20.7	\$17.6	\$21.5		
Total EPC Costs	\$136.8	\$120.5	\$114.8	\$128.9		
Non-EPC Costs						
Project Development	\$12.2	\$11.4	\$9.7	\$11.8		
Mobilization and Start-Up	\$2.4	\$2.3	\$1.9	\$2.4		
Net Start-Up Fuel Costs	\$2.6	\$1.7	\$0.2	\$0.6		
Electrical Interconnection	\$7.8	\$7.8	\$7.1	\$7.6		
Gas Interconnection	\$29.1	\$29.1	\$29.1	\$29.1		
Land	\$0.4	\$0.7	\$0.3	\$0.5		
Fuel Inventories	\$3.0	\$3.0	\$2.7	\$2.9		
Non-Fuel Inventories	\$1.2	\$1.1	\$1.0	\$1.2		
Owner's Contingency	\$4.7	\$4.6	\$4.2	\$4.5		
Financing Fees	\$8.0	\$7.5	\$6.5	\$7.7		
Total Non-EPC Costs	\$71.4	\$69.2	\$62.6	\$68.3		
Total Capital Costs	\$316.0	\$296.8	\$256.5	\$304.7		
Overnight Capital Costs (\$million)	\$316	\$297	\$257	\$305		
Overnight Capital Costs (\$/kW)	\$898	\$836	\$799	\$886		
Installed Cost (\$/kW)	\$938	\$874	\$835	\$925		

Combined Cycle (CC)

	CONE Area					
	1	2	3	4		
	EMAAC	SWMAAC	Rest of RTO	WMAAC		
Capital Costs (in \$millions)	1152 MW	1160 MW	1138 MW	1126 MW		
Owner Furnished Equipment						
Gas Turbines	\$173.2	\$167.5	\$173.2	\$173.2		
HRSG / SCR	\$55.4	\$53.6	\$55.4	\$55.4		
Sales Tax	\$15.1	\$13.3	\$14.5	\$14.5		
Total Owner Furnished Equipment	\$243.8	\$234.4	\$243.1	\$243.1		
EPC Costs						
Equipment						
Condenser	\$5.8	\$5.8	\$5.8	\$5.8		
Steam Turbines	\$47.1	\$45.5	\$47.1	\$47.1		
Other Equipment	\$74.7	\$72.1	\$74.7	\$74.7		
Construction Labor	\$211.1	\$159.3	\$167.4	\$187.2		
Other Labor	\$56.5	\$50.6	\$52.5	\$54.3		
Materials	\$51.5	\$51.2	\$51.5	\$51.5		
Sales Tax	\$11.9	\$10.5	\$11.4	\$11.4		
EPC Contractor Fee	\$70.2	\$62.9	\$65.3	\$67.5		
EPC Contingency	\$77.3	\$69.2	\$71.9	\$74.3		
Total EPC Costs	\$606.1	\$527.3	\$547.6	\$573.7		
Non-EPC Costs						
Project Development	\$42.5	\$38.1	\$39.5	\$40.8		
Mobilization and Start-Up	\$8.5	\$7.6	\$7.9	\$8.2		
Net Start-Up Fuel Costs	\$0.8	-\$5.5	-\$10.5	-\$7.2		
Electrical Interconnection	\$25.5	\$25.6	\$25.2	\$24.9		
Gas Interconnection	\$29.1	\$29.1	\$29.1	\$29.1		
Land	\$1.5	\$2.7	\$1.0	\$2.0		
Fuel Inventories	\$6.9	\$0.0	\$6.8	\$6.7		
Non-Fuel Inventories	\$4.2	\$3.8	\$4.0	\$4.1		
Owner's Contingency	\$9.5	\$8.1	\$8.2	\$8.7		
Emission Reduction Credit	\$2.2	\$2.2	\$2.2	\$2.2		
Financing Fees	\$25.5	\$22.7	\$23.5	\$24.3		
Total Non-EPC Costs	\$156.1	\$134.4	\$136.9	\$143.9		
Total Capital Costs	\$1,006.0	\$896.1	\$927.6	\$960.7		
Overnight Capital Costs (\$million)	\$1,006	\$896	\$928	\$961		
Overnight Capital Costs (\$/kW)	\$873	\$772	\$815	\$853		
Installed Cost (\$/kW)	\$951	\$841	\$887	\$929		

O&M Cost Estimates

Combustion Turbine (CT)

	1	2	3	4
O&M Costs	EMAAC	SWMAAC	Rest of RTO	WMAAC
	352 MW	355 MW	321 MW	344 MW
Fixed O&M (2022\$ million)				
LTSA	\$0.3	\$0.3	\$0.3	\$0.3
Labor	\$1.1	\$1.2	\$0.8	\$0.9
Maintenance and Minor Repairs	\$0.5	\$0.5	\$0.5	\$0.5
Administrative and General	\$0.2	\$0.2	\$0.2	\$0.2
Asset Management	\$0.5	\$0.6	\$0.4	\$0.4
Property Taxes	\$0.3	\$4.1	\$1.8	\$0.3
Insurance	\$1.9	\$1.8	\$1.5	\$1.8
Working Capital	\$0.04	\$0.03	\$0.03	\$0.03
Total Fixed O&M (2022\$ million)	\$4.8	\$8.7	\$5.6	\$4.4
Levelized Fixed O&M (2022\$/MW-yr)	\$13,600	\$24,400	\$17,300	\$12,600
Variable O&M (2022\$/MWh)				
Consumables, Waste Disposal, Other VOM	1.10	1.10	0.95	1.10
Total Variable O&M (2022\$/MWh)	1.10	1.10	0.95	1.10
Major Maintenance - Starts Based				
(\$/factored start, per turbine)	23,464	23,464	23,464	23,464

Combined Cycle (CC)

	CONE Area			
O&M Costs	1 EMAAC 1152 MW	2 SWMAAC 1160 MW	3 Rest of RTO 1138 MW	4 WMAAC 1126 MW
Fixed O&M (2022\$ million)				
LTSA	\$0.5	\$0.5	\$0.5	\$0.5
Labor	\$5.8	\$6.3	\$4.4	\$4.6
Maintenance and Minor Repairs	\$5.9	\$6.1	\$5.4	\$5.5
Administrative and General	\$1.3	\$1.4	\$1.1	\$1.2
Asset Management	\$1.6	\$1.7	\$1.2	\$1.3
Property Taxes	\$2.0	\$12.3	\$7.1	\$1.9
Insurance	\$6.0	\$5.4	\$5.6	\$5.8
Firm Gas Contract	\$0.0	\$9.7	\$0.0	\$0.0
Working Capital	\$0.1	\$0.1	\$0.1	\$0.1
Total Fixed O&M (2022\$ million) Levelized Fixed O&M (2022\$/MW-yr)	\$23.3 \$20,200	\$43.5 \$37,500	\$25.4 \$22,300	\$20.9 \$18,600
Variable O&M (2022\$/MWh)				
Major Maintenance - Hours Based	1.44	1.44	1.44	1.44
Consumables, Waste Disposal, Other VOM	0.67	0.67	0.67	0.67
Total Variable O&M (2022\$/MWh)	2.11	2.11	2.11	2.11