

Circuit Breaker Simulation

Rebecca Carroll
Director, Market Design
EPFSTF
February 16, 2022

- This presentation is meant to illustrate hypothetical scenarios to generate stakeholder discussion.
- The conditions and outcomes of the scenarios should not be interpreted to represent future market outcomes.

Scenario 1: Real-Time Load Risk Analysis Assumptions

Load Assumptions	 RT Hourly Metered Load levels from Jan. 7, 2014 97% of RT Hourly Load purchased at DA LMP in Day-Ahead Market Remaining 3% of Load purchases at RT LMP in Balancing Market
Pricing Assumptions	 Shortage conditions assumed for 14 hours in Real-Time, starting at HE 7 Simulated shortage with three pricing levels (\$3,750 \$6,300 \$12,000) Non-shortage hours use actual DA and RT Hourly LMPs from 1/7/2014
Circuit Breaker Design Assumptions	 Triggered after 10 hours of continuous shortage conditions (in effect for 4 hours of simulation) Circuit breaker price set to \$2,000/MWh

Analysis Findings – Scenario 1: Real-Time Load Risk

3% of Real-Time Load Exposed to Shortage Pricing for 14 Hours

Assumed Max Energy Price	RT Load Billing without Circuit Breaker	RT Load Billing with Circuit Breaker	Total Daily Billing*	Benefit to Exposed RT Load	%Total Daily Billing
\$3,750	\$224 Million	\$195 Million	\$972 Million	13%	3%
\$6,300	\$368 Million	\$297 Million	\$1.11 Billion	19%	6%
\$12,000	\$691 Million	\$526 Million	\$1.44 Billion	24%	11%

Takeaway: When shortage conditions only exist in real-time, the circuit breaker has a smaller benefit to load because of the small portion of load that is exposed to RT LMP.

^{*}Total Daily Billing = DA Energy Charges (97% Hourly Metered Load * Actual DA LMP) + RT Load Billing without Circuit Breaker

Scenario 2: Generator Risk Analysis Assumptions

Generation Assumptions

- RT Hourly Metered Load levels from Jan. 7, 2014
- 97% of RT Hourly Load supplied by generation at DA LMP in Day-Ahead
- 14% of DA cleared Generation forced out in Real-Time required to buy back at difference between DA and RT LMPs

Pricing Assumptions

- Shortage conditions assumed for 14 hours in Real-Time; Starting at HE7
- Simulated with three pricing levels (\$3,750 | \$6,300 | \$12,000)
- Non-shortage hours use actual DA and RT Hourly LMPs from 1/7/2014

Circuit Breaker Design Assumptions

- Triggered after 10 hours of continuous shortage conditions (in effect for 4 hours of simulation)
- Circuit breaker price set to \$2,000/MWh

Analysis Findings – Scenario 2: Generator Risk

14% of Day-Ahead Generation Buy Back During 14 Hour Shortage Event

Assumed Max Energy Price	RT Energy Buy Back without Circuit Breaker	RT Energy Buy Back with Circuit Breaker	Benefit to Supply
\$3,750	\$937 Million	\$804 Million	14%
\$6,300	\$1.6 Billion	\$1.3 Billion	21%
\$12,000	\$3.1 Billion	\$2.3 Billion	25%

Takeaways: When shortage conditions only exist in real-time:

- The circuit breaker provides benefit to supply that is unavailable in realtime at the expense of incentivizing performance.
- Additive Capacity
 Performance
 penalties provide
 additional exposure.
- Capacity Performance penalties have an existing stoploss provision.

Scenario 3: Day-Ahead Shortage Analysis Assumptions

Load Assumptions

- RT Hourly Metered Load levels from Jan. 7, 2014
- 97% of load exposed to Day-Ahead prices

Pricing Assumptions

- Single day reserve shortage event; multi-day would be additive
- Shortage conditions assumed for all 24 hours in Day-Ahead
- Simulated with three pricing levels (\$3,750 | \$6,300 | \$12,000)

Circuit Breaker Design Assumptions

- Simulation applies circuit breaker to all 24 hours
- Circuit breaker price set to \$2,000/MWh

Analysis Findings – Scenario 3: Day-Ahead Shortage

Shortage Event Triggered in Day-Ahead Market for all 24 Hours and Circuit Breaker Applied all 24

Assumed Max Energy Price	Estimated Cost without Circuit Breaker	Estimated Cost with Circuit Breaker	Reduction in Day-Ahead Billing
\$3,750	\$11.4 Billion	\$5.1 Billion	55%
\$6,300	\$16.0 Billion	\$5.1 Billion	68%
\$12,000	\$30.5 Billion	\$5.1 Billion	83%

Takeaways: If there is a shortage in day-ahead:

- DA circuit breaker
 has a significant
 impact, even at
 existing price caps.
- Likelihood of DA shortage is low, as load not likely to bid into DA Market at the maximum price.

Presenter:

Rebecca Carroll | Rebecca.Carroll@pjm.com

Facilitator:

Susan Kenney | Susan.Kenney@pjm.com

Secretary:

Andrea Yeaton | Andrea.Yeaton@pjm.com

Circuit Breaker Simulation

Member Hotline

(610) 666-8980

(866) 400-8980

custsvc@pjm.com

Appendix Historical Frequency of Shortage Conditions

Frequency of Shortage Conditions (2012-2017)

Date	Shortage Locations	Shortage Products	Total Number of Intervals / Max. Consecutive Intervals	Reason for Shortage
January 6, 2014	MAD & RTO	Primary and Synchronized Reserves	12 / 12	Voltage Reduction Action for RTO
January 7, 2014	MAD & RTO	Primary and Synchronized Reserves	59 / 54	Reserve shortage
September 21, 2017*	RTO	Synchronized Reserves	2	Reserve shortage
2017	MAD & RTO	Primary Reserves	19 / 12	Reserve shortage
October 31, 2017*	MAD & RTO	Synchronized Reserves	1 / 1	Reserve shortage

^{*}Only short the Extended Reserve Requirement (Step 2 of ORDC)

Frequency of Shortage Conditions (2018-Present)

Year	Shortage Locations	Shortage Products	Total Number of Intervals / Max. Consecutive Intervals	Reason for Shortage
2018	MAD & RTO	Primary and Synchronized Reserves	5/2	Reserve shortage
2019	MAD & RTO	Primary and Synchronized Reserves	35 / 4	Reserve shortage
2020	MAD & RTO	Primary and Synchronized Reserves	8/2	Reserve shortage
2021	MAD & RTO	Synchronized Reserves	9/2	Reserve shortage