# Fifth Review of the Variable Resource Requirement Curve

### PRELIMINARY ASSESSMENT OF THE VRR CURVE SHAPE

PRESENTED BY Kathleen Spees Samuel Newell Andrew Thompson Xander Bartone PRESENTED TO PJM Market Implementation Committee

**DECEMBER 8, 2021** 





Overview

Assessment of Over-Procurement

Performance of Current VRR Curve

**Alternative Curves** 

Locational VRR Curves

Discussion

# Overview

### Current state of VRR review process

Through the quadrennial review process, we are evaluating the ability of the VRR curve to meet reliability needs, including:

- VRR Curve Shape
- Gross CONE
- E&AS Offset

Current stage: initial results and preliminary recommendations

- Initial results and sensitivity analyses aimed at defining workable VRR curve parameter space
- No recommendations are final
- Some numbers (most importantly CONE and Net CONE) are placeholders pending final analyses

### **Stakeholder Input Requested:**

- Feedback on preliminary findings and recommendations
- Additional curve refinements and concepts to be tested

### **Illustrative Supply and Demand**



### Demand curve design objectives

|                                                | Demand Curve Objectives                                                                                                                                                                                                                     |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reliability</b><br>(based on<br>current PJM | <ul> <li>Maintain 1-in-10 LOLE system-wide target on a long-term average basis; maintain 1-in-25<br/>conditional LOLE in each locational deliverability area. Reliability as measured immediately prior<br/>to the delivery year</li> </ul> |
| rules)                                         | <ul> <li>Avoid market clearing outcomes that result in insufficient capacity and out-of-market intervention</li> </ul>                                                                                                                      |
|                                                | <ul> <li>Maintain reliability across a range of potential market conditions, while mitigating the potential<br/>for over-procurement</li> </ul>                                                                                             |
| Prices                                         | <ul> <li>Prices high enough to attract entry when needed for reliability; prices low enough to enable efficient exit and retirements during surplus</li> </ul>                                                                              |
|                                                | <ul> <li>Reduce price volatility due to small changes in supply and demand</li> </ul>                                                                                                                                                       |
|                                                | <ul> <li>Mitigate susceptibility to exercise of market power</li> </ul>                                                                                                                                                                     |
|                                                | <ul> <li>Allow prices to move sufficiently to reflect changes in market conditions</li> </ul>                                                                                                                                               |
|                                                | <ul> <li>Few outcomes at the administrative cap</li> </ul>                                                                                                                                                                                  |
| Other                                          | <ul> <li>Strike a balance among competing objectives</li> </ul>                                                                                                                                                                             |
|                                                | <ul> <li>Aim for simplicity, stability, transparency, and consensus</li> </ul>                                                                                                                                                              |

### Preliminary/directional recommendations

- Eliminate upward bias in the load forecast
- Improve accuracy, transparency, and consistency in capacity supply and demand accounting, particularly in the winter season
- Adopt a gas-fired combined cycle plant as the reference technology, subject to any future evidence that gas CCs cannot be built in some LDAs
- Balance competing objectives through adjustments to the system-wide VRR curve
  - Incorporate a lower Net CONE (consistent with using a gas CC as reference technology)
  - Maintain a price cap that is high enough to account for Net CONE uncertainties and administrative error
  - Consider a steeper curve to mitigate high uncertainty/judgment in Net CONE; shape could be informed by the Marginal Reliability Impact (MRI) curve
- Defer consideration of any additional left-shifting in the BRA VRR curve
- For the LDAs, consider wider or MRI-based demand curves to moderate price volatility and manage reliability needs

### Initial range of assessed VRR parameters

### **Illustrative Range of Curves Evaluated**

We have not yet developed a specific VRR curve recommendation

Directionally, we recommend to adopt a CC-based Net CONE and a steeper VRR curve shape



#### UCAP Reserve Margin (%)

ICAP Reserve Margin (%)

Note: Current Curve, CT has price cap at 1.5 x Net CONE; Current Curve, CC has cap at CC Gross CONE (greater than 1.5 x CC Net CONE); Straight curve, tuned to 1-in-10 BRA LOLE, passes through (Reliability Requirement, CC Net CONE); MRI Curve, tuned to 1-in-10 LOLE is calculated as the avoided expected unserved energy (EUE) per UCAP MW of capacity added, inflated by a \$/MWh multiplier to translate into units of capacity price. Multiplier chosen to achieve 1-in-10 BRA LOLE. Gross and Net CONE values are from 2023-2024 BRA Default MOPR, converted to \$2026 using a 2.7% inflation rate.

brattle.com | 6

# **Assessment of Over-procurement**

## Historical over-procurement in RPM

### **PJM Installed Reserve Margin**



Sources: <u>PJM 2022/2023 RPM Base Residual Auction Results, Table 1</u>; <u>PJM Forecasted Reserve Margin Graphs</u>; <u>NERC Summer Reliability Assessments</u>, <u>BRA Planning Parameters</u>. Note: Summer Reserve Margins are estimated prior to delivery/ NERC Summer Assessment Reserve Margin includes supply not committed in RPM. Capacity commitments include EE; reliability requirement is not grossed up for EE.

### Over-procurement in recent years



### Factors contributing to over-procurement



Drivers of Over-Procurement in 2021/22 Delivery Year

### Opportunities to manage over-procurement

|                       | Opportunities to Address Over-procurement                                                                                                                                                                                                                 |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Changes already       | <ul> <li>Improve load forecast accuracy and eliminate over-forecast bias</li> </ul>                                                                                                                                                                       |
| implemented or        | <ul> <li>Adopt forward-looking estimate of E&amp;AS revenues</li> </ul>                                                                                                                                                                                   |
| being pursued by      | Eliminate 1% left-shift of demand curve                                                                                                                                                                                                                   |
| PJM                   | <ul> <li>Eliminate discrepancy between EE gross-up and cleared quantities</li> </ul>                                                                                                                                                                      |
| Areas in scope in the | Determine the appropriate level of capacity procurement                                                                                                                                                                                                   |
| RASTF                 | <ul> <li>Explicitly measure capacity requirements and supply commitments in winter season, and more<br/>fully integrate seasonal resources</li> </ul>                                                                                                     |
|                       | Improve capacity qualification methods and performance requirements for capacity resources                                                                                                                                                                |
| Other opportunities   | Change reference technology from CT to CC                                                                                                                                                                                                                 |
| for improvement       | <ul> <li>Explore possibility of qualifying EE as supply-side resources in the capacity market if suppliers demonstrate that the EE measures are not already accounted for in the load forecast, thereby eliminating the EE addback</li> </ul>             |
|                       | <ul> <li>Improve accounting consistency and clarity by using UCAP accounting for all purposes in RPM and<br/>seasonal reliability assessments; distinguish between supply MW with and without capacity<br/>commitments in seasonal assessments</li> </ul> |

# Performance of the Current VRR Curve

### Conceptual basis for VRR curve parameters



Source: 2022/23 RPM Base Residual Auction Planning Parameters.

Acronyms: P = Price Q = Quantity IRM = Installed Reserve Margin RR = Reliability Requirement PRD = Price Responsive Demand EE = Energy Efficiency

#### PERFORMANCE OF THE CURRENT VRR CURVE

# Probabilistic modeling approach

- Monte Carlo model of 3-year forward capacity market and prompt markets
- Accounts for variability in:
  - Supply curve shapes
  - BRA supply quantity and demand quantity
  - Incremental Auction supply availability and load forecast uncertainty
- All model inputs derived from historical market data
- Assesses long-run equilibrium conditions
- Produces an expected distribution of price, quantity, and reliability outcomes at both 3year forward and prompt periods that are compared to design objectives



#### Supply and Demand Variability (Illustrative)

#### **PERFORMANCE OF THE CURRENT VRR CURVE**

### Combined cycle is likely a better reference technology



Source and Notes: Annotated Net CONE values are from <u>2023-2024 BRA Default MOPR</u>, elevated to \$2026 using an inflation rate of 2.7% Figure source <u>PJM</u>, <u>2022/2023 RPM Base Residual Auction Results</u>, Figure 2.

# Adopting a gas CC as reference technology

Updating the current curve based on a CC as reference technology results in:

- Steeper and left-shifted curve (reduces over-procurement)
- For CC, since 1 x CONE is higher than 1.5 x Net CONE (due to high E&AS), 1 x CONE applies as the price cap
- Maintains a relatively high price cap and some protection against error in Net CONE)



### **Current Curves with Varying Net CONE Values**

Source and Notes: Annotated Gross and Net CONE values are from <u>2023-</u> <u>2024 BRA Default MOPR</u>, elevated to \$2026 using an inflation rate of 2.7%.

#### UCAP Reserve Margin (%)

ICAP Reserve Margin (%)

brattle.com | 16

## Updating the reference tech could mitigate over-procurement

|                                                             |           |                       |                     | Measured A      |                                |                                |                                                  |                                |                                |
|-------------------------------------------------------------|-----------|-----------------------|---------------------|-----------------|--------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|
| Demand Curve                                                |           | Price                 |                     |                 | Cost                           |                                |                                                  |                                |                                |
|                                                             | Average   | Standard<br>Deviation | Frequency<br>at Cap | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost |
|                                                             | (\$/MW-d) | (\$/MW-d)             | (%)                 | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    |
| Vertical Curve, True Net CONE = CC                          | \$141     | \$72                  | 0.6%                | 0.100           | -5                             | 0.0%                           | 0.6%                                             | 0.1%                           | \$6,824                        |
| Current VRR Curves, True Net CONE = CC<br>Current Curve, CT | \$141     | \$54                  | 0.0%                | 0.026           | 4,590                          | 4.0%                           | 0.0%                                             | 0.0%                           | \$7,023                        |
| Current Curve, CC                                           | \$141     | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        |

Updating the reference technology would reduce average excess procurement, but reliability would still exceed the 0.1 LOLE target under base modeling assumptions.

## Sensitivity to Net CONE uncertainty

- What if the reference technology is wrong?
- What if true net CONE is 40% lower or 40% higher than administrative net CONE?

**Looking for:** Reliability risks if Net CONE is underestimated, and over-procurement costs if Net CONE is over-estimated



**Current Curves Performance with Varying True Net CONE** 

UCAP Reserve Margin (%) ICAP Reserve Margin (%)

# Sensitivity Analysis of Current Curve

### Sensitivity to uncertainty in true net CONE

|                     |                                                      |                                                      |                                              | BRA                                          |                      |                                                                     |                                |                                                  |                                |                                |  |
|---------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------|---------------------------------------------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|--|
| Demand Curve        |                                                      | Price                                                |                                              |                                              | Reliability          |                                                                     |                                |                                                  |                                |                                |  |
|                     |                                                      | Average                                              | Standard<br>Deviation                        | Frequency<br>at Cap                          | Average<br>LOLE      | Average<br>Excess<br>(Deficit)                                      | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost |  |
|                     |                                                      | (\$/MW-d)                                            | (\$/MW-d)                                    | (%)                                          | (events/yr)          | (MW)                                                                | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    |  |
| Current Curve, CC   |                                                      |                                                      |                                              |                                              |                      |                                                                     |                                |                                                  |                                |                                |  |
| True Net CONE = 0.6 | 5 x CC Net CONE                                      | \$84                                                 | \$51                                         | 0.0%                                         | 0.033                | 4220                                                                | 3.7%                           | 0.0%                                             | 0.0%                           | \$4,179                        |  |
| True Net CONE = CO  | C                                                    | \$141                                                | \$57                                         | 0.0%                                         | 0.055                | 2,172                                                               | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        |  |
| True Net CONE = 1.4 | 1 x CC Net CONE                                      | \$197                                                | \$69                                         | 1.9%                                         | 0.076                | 1,050                                                               | 0.9%                           | 11.1%                                            | 2.9%                           | \$9,602                        |  |
| True Net CONE = CT  |                                                      | \$287                                                | \$75                                         | 20.9%                                        | 0.141                | -640                                                                | -0.5%                          | 51.9%                                            | 25.4%                          | \$13,807                       |  |
| Current Curve, CT   |                                                      |                                                      |                                              |                                              |                      |                                                                     |                                |                                                  |                                |                                |  |
| True Net CONE = CO  | 2                                                    | \$141                                                | \$54                                         | 0.0%                                         | 0.026                | 4,590                                                               | 4.0%                           | 0.0%                                             | 0.0%                           | \$7,023                        |  |
| True Net CONE = CT  |                                                      | \$287                                                | \$80                                         | 9.9%                                         | 0.089                | 900                                                                 | 0.8%                           | 23.2%                                            | 12.0%                          | \$13,963                       |  |
|                     | CC-based curve<br>under-estimate<br>in-7 LOLE even i | is robust to re<br>d to price cap<br>f CT is the tru | eliability risk<br>minimum at<br>e reference | s even if Net<br>t 1xCONE. Su<br>technology. | CONE is<br>pports 1- | ONE is<br>ports 1-<br>when clearing on the "foot" of the VRR curve. |                                |                                                  |                                |                                |  |

# Sensitivity to forward-to-prompt uncertainties

Updated modeling approach assesses the impact of load forecast error on VRR performance

### Looking at:

- How load forecast bias affects performance
- How unbiased load forecast error affects performance
- Whether short-term supply availability could justify lower procurement volumes in the BRA

Modeling Forward-to-Prompt Uncertainties

**Base Residual Auction** *Clears at intersection of Supply and Demand* 

**3<sup>rd</sup> IA Reliability Requirement** BRA Reliability Requirement +/- 3-year forecast error **3<sup>rd</sup> IA Supply Available** 50% of BRA uncleared supply +/-1.1% of total

**Final Supply Commitments** 

If RR increases, procure 100% of the increase if sufficient supply is available. If RR decreases, release 50% of the reduction.

#### SENSITIVITY ANALYSIS OF CURRENT CURVE

### Sensitivity to forward load forecast bias

|                                     |           |                       |                     | Measured A      | After the 3                    | -Year Forward                  | BRA                                              |                                |                                | Me              | asured Aft                     | er the Last In                 | cremental Auct                                      | ion                            |
|-------------------------------------|-----------|-----------------------|---------------------|-----------------|--------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|-----------------|--------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------|
| Demand Curve                        |           | Price                 |                     |                 | Reliability                    |                                |                                                  |                                |                                | Cost Reliab     |                                |                                | bility                                              |                                |
|                                     | Average   | Standard<br>Deviation | Frequency<br>at Cap | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>IA Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% |
|                                     | (\$/MW-d) | (\$/MW-d)             | (%)                 | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                                 | (%)                            |
| Current Curve, CC, PJM IA Mechanism |           |                       |                     |                 |                                |                                |                                                  |                                |                                |                 |                                |                                |                                                     |                                |
| Over-forecast bias = +4%            | \$141     | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.023           | 4,781                          | 4.3%                           | 0.0%                                                | 0.0%                           |
| Over-forecast bias = +2%            | \$141     | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6 <i>,</i> 905               | 0.036           | 3,510                          | 3.1%                           | 0.3%                                                | 0.0%                           |
| Load forecast bias = 0%             | \$141     | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.050           | 2,551                          | 2.2%                           | 0.9%                                                | 0.4%                           |
| Under-forecast bias = -2%           | \$141     | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.060           | 2,033                          | 1.7%                           | 5.0%                                                | 2.5%                           |

Opportunity to procure additional supply in the IAs may provide a small boost to reliability, protecting against reliability concerns.

As expected, overforecast bias causes excess procurement.

#### Note:

Over-forecast bias means BRA reliability requirement is consistently above the Incremental Auction reliability requirement. Under-forecast bias means BRA reliability requirement is consistently below the Incremental Auction reliability requirement. Bias percentages in terms of 3<sup>rd</sup> Incremental Auction reliability requirement. All dollar values are in \$ 2026 / MW-day.

## Sensitivity to forward <u>unbiased</u> load forecast error

|                        |           | Measured After the 3-Year Forward BRA |                     |                 |                                |                                |                                                  |                                |                                |                 |                                | Measured After the Last Incremental Auction |                                                     |                                |  |  |  |
|------------------------|-----------|---------------------------------------|---------------------|-----------------|--------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|-----------------|--------------------------------|---------------------------------------------|-----------------------------------------------------|--------------------------------|--|--|--|
| Demand Curve           |           | Price                                 |                     | Reliability     |                                |                                |                                                  |                                | Cost                           | Reliability     |                                |                                             |                                                     |                                |  |  |  |
|                        | Average   | Standard<br>Deviation                 | Frequency<br>at Cap | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit)              | Frequency<br>Below<br>IA Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% |  |  |  |
|                        | (\$/MW-d) | (\$/MW-d)                             | (%)                 | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    | (events/yr)     | (MW)                           | (IRM + X %)                                 | (%)                                                 | (%)                            |  |  |  |
| Current Curve, CC      |           |                                       |                     |                 |                                |                                |                                                  |                                |                                |                 |                                |                                             |                                                     |                                |  |  |  |
| Forecast error = 0.8%  | \$141     | \$57                                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.051           | 2,369                          | 2.1%                                        | 0.2%                                                | 0.0%                           |  |  |  |
| Forecast error = 1.65% | \$141     | \$57                                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.050           | 2,551                          | 2.2%                                        | 0.9%                                                | 0.4%                           |  |  |  |
| Forecast error = 3%    | \$141     | \$57                                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.051           | 2,737                          | 2.4%                                        | 3.8%                                                | 2.2%                           |  |  |  |
| Forecast error = 4%    | \$141     | \$57                                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.058           | 2,754                          | 2.5%                                        | 7.9%                                                | 5.0%                           |  |  |  |

If load forecast error is high, there is a greater chance that increases in demand could exceed short-term supply availability. This could modestly reduce reliability.

## Sensitivity to short-term supply availability

|                                     | Measured After the 3-Year Forward BRA |                       |                     |                 |                                |                                |                                                  |                                |                                | Measured After the Last Incremental Auction |                                |                                |                                                     |                                |  |  |  |
|-------------------------------------|---------------------------------------|-----------------------|---------------------|-----------------|--------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------|--|--|--|
| Demand Curve                        |                                       | Price                 |                     | Reliability     |                                |                                |                                                  |                                | Cost                           | Reliability                                 |                                |                                |                                                     |                                |  |  |  |
|                                     | Average                               | Standard<br>Deviation | Frequency<br>at Cap | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost | Average<br>LOLE                             | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>IA Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% |  |  |  |
|                                     | (\$/MW-d)                             | (\$/MW-d)             | (%)                 | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    | (events/yr)                                 | (MW)                           | (IRM + X %)                    | (%)                                                 | (%)                            |  |  |  |
| Current Curve, CC, PJM IA Mechanism |                                       |                       |                     |                 |                                |                                |                                                  |                                |                                |                                             |                                |                                |                                                     |                                |  |  |  |
| Prompt supply = 0%                  | \$141                                 | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.065                                       | 1,927                          | 1.7%                           | 15.2%                                               | 6.6%                           |  |  |  |
| Prompt supply = 50% of historical   | \$141                                 | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.053                                       | 2,413                          | 2.1%                           | 4.2%                                                | 1.5%                           |  |  |  |
| Prompt supply = 100% of historical  | \$141                                 | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.050                                       | 2,551                          | 2.2%                           | 0.9%                                                | 0.4%                           |  |  |  |
| Prompt supply = 150% of historical  | \$141                                 | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        | 0.049                                       | 2,580                          | 2.2%                           | 0.2%                                                | 0.0%                           |  |  |  |

If no prompt supply is available, average system reliability decreases from approximately 1in-18 to 1-in-15 LOLE

# **Alternative Curves**

#### **ALTERNATIVE CURVES**

### Curves "tuned" to 1-in-10 LOLE

### "Tuned" curves are those we estimate to achieve 1-in-10 LOLE on average

### **Considerations:**

- Shape: A somewhat steeper and leftshifted curve may be justified to further mitigate over-procurement (downside higher price volatility)
- Quantity at the cap: Should be at or above reliability backstop threshold (currently at IRM – 1%)
- Price at the cap: Should stay high enough to manage Net CONE uncertainties

### **Curves Tuned to 1-in-10 LOLE in BRA**



UCAP Reserve Margin (%) ICAP Reserve Margin (%)

#### **ALTERNATIVE CURVES**

### Curves "tuned" to 1-in-10 LOLE

|                                                     |               |               |                       |                     | Measured A      | After the 3                    | -Year Forward                  | I BRA                                            |                                |                                |  |
|-----------------------------------------------------|---------------|---------------|-----------------------|---------------------|-----------------|--------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|--|
| Demand Curve                                        |               | Price         |                       |                     | Reliability     |                                |                                |                                                  |                                |                                |  |
|                                                     |               | Average       | Standard<br>Deviation | Frequency<br>at Cap | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost |  |
|                                                     |               | (\$/MW-d)     | (\$/MW-d)             | (%)                 | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    |  |
| Current Curve, CC                                   |               | \$141         | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        |  |
| Straight Curve, CC, Price Cap Quantity (IRM         | -1%)          |               |                       |                     |                 |                                |                                |                                                  |                                |                                |  |
| Price cap (1.5 x Net CONE)                          |               | \$141         | \$49                  | 12.0%               | 0.100           | 863                            | 0.8%                           | 26.8%                                            | 12.0%                          | \$6,825                        |  |
| Price cap (0.75 x CC Gross CONE)                    |               | \$141         | \$64                  | 1.0%                | 0.100           | 6                              | 0.0%                           | 45.9%                                            | 1.0%                           | \$6,809                        |  |
| Price cap (0.875 x CC Gross CONE)                   |               | \$141         | \$66                  | 0.4%                | 0.100           | -9                             | 0.0%                           | 47.5%                                            | 0.4%                           | \$6,813                        |  |
| Price cap (CC Gross CONE)                           |               | \$141         | \$67                  | 0.2%                | 0.100           | -11                            | 0.0%                           | 47.5%                                            | 0.2%                           | \$6,815                        |  |
| Straight Curve, CC, Price Cap Quantity (BRA         | 1-in-5)       |               | /                     |                     |                 |                                |                                |                                                  |                                |                                |  |
| Price cap (0.875 x CC Gross CONE)                   |               | \$141         | \$62                  | 0.0%                | 0.100           | 47                             | 0.0%                           | 45.8%                                            | 7.1%                           | \$6,806                        |  |
|                                                     |               | /_            | <u> </u>              |                     |                 |                                |                                |                                                  |                                |                                |  |
|                                                     | Steepe        | er curves wo  | uld                   | 11                  | uned curves e   | Different                      | y eliminate o                  | over-                                            |                                |                                |  |
|                                                     | modes         | stiy increase | price                 | pr                  | rocurement.     |                                | Trom prior (                   | UER analyses                                     |                                |                                |  |
| All curves are tuned to achieve 1-in-10 LOLE in the | ity (but subs | tantially     | SI                    | nce lower Ne        |                 | and more su                    | pply elasticity                | y i                                              |                                |                                |  |
| n average.                                          | ted by high e | elasticity    | er                    | hable more "        | right sizir     | ng" of procu                   | irements in a                  | 11                                               |                                |                                |  |
| lar values are in \$ 2026 / MW-day.                 | supply stack  | ).            | ye                    | ears                |                 |                                |                                |                                                  | brattle.com   27               |                                |  |

### ALTERNATIVE CURVES Should the VRR curve be left-shifted in the BRA to rely on shortterm procurements?

- Tuning the demand curve to achieve 1-in-10 as of the last IA (rather than the BRA) would result in a modest left-shift of the VRR curve
- Not recommended until more experience and evidence that supply will be available in the incremental auctions during shortage conditions

### Curves Tuned to 1-in-10 LOLE in BRA and IA



UCAP Reserve Margin (%) ICAP Reserve Margin (%)

### ALTERNATIVE CURVES How does a curve proportional to Marginal Reliability Impact perform?

- A demand curve based on the Marginal Reliability Impact (MRI) of capacity reflects the expected improvement in reliability associated with adding incremental capacity
- Convex shape has conceptual basis aligned with reliability value, prices increase at higher rate at low reliability while they decrease gradually at high reliability



**Marginal Reliability Impact Curves** 

Note: MRI-based curves are calculated as the avoided expected unserved energy (EUE) per UCAP MW of capacity added, inflated by a \$/MWh multiplier to translate into units of capacity price. The \$/MWh multiplier is chosen to achieve the design objective such as to intersect with IRM-1% at CC Gross CONE (Cap @ CC CONE), intersect with 1-in-5 LOLE at CC Gross CONE (Cap @ CC CONE & 1-in-5), chosen so the curve will obtain 1-in-10 LOLE on average (Tuned to 1-in-10 LOLE), or to intersect with the reliability requirement @ CC Net CONE (CC Net CONE, 1-in-10 LOLE).

#### UCAP Reserve Margin (%)

ICAP Reserve Margin (%)

### **MRI-based VRR curves**

|                                | Measured After the 3-Year Forward BRA |                       |                     |                 |                                |                                |                                                  |                                |                                |  |  |  |
|--------------------------------|---------------------------------------|-----------------------|---------------------|-----------------|--------------------------------|--------------------------------|--------------------------------------------------|--------------------------------|--------------------------------|--|--|--|
| Demand Curve                   |                                       | Price                 |                     |                 | Reliability                    |                                |                                                  |                                |                                |  |  |  |
|                                | Average                               | Standard<br>Deviation | Frequency<br>at Cap | Average<br>LOLE | Average<br>Excess<br>(Deficit) | Average<br>Excess<br>(Deficit) | Frequency<br>Below<br>Reliability<br>Requirement | Frequency<br>Below<br>IRM - 1% | Average<br>Procurement<br>Cost |  |  |  |
|                                | (\$/MW-d)                             | (\$/MW-d)             | (%)                 | (events/yr)     | (MW)                           | (IRM + X %)                    | (%)                                              | (%)                            | (\$ mln/yr)                    |  |  |  |
| Current Curve, CC              | \$141                                 | \$57                  | 0.0%                | 0.055           | 2,172                          | 1.9%                           | 0.7%                                             | 0.0%                           | \$6,905                        |  |  |  |
| Tested MRI Curves, CC          |                                       |                       |                     |                 |                                |                                |                                                  |                                |                                |  |  |  |
| Cap @ CC CONE                  | \$141                                 | \$57                  | 0.0%                | 0.054           | 2,162                          | 1.9%                           | 1.6%                                             | 0.0%                           | \$6,904                        |  |  |  |
| Cap @ CC CONE & 1-in-5         | \$141                                 | \$57                  | 0.0%                | 0.080           | 938                            | 0.8%                           | 26.8%                                            | 2.3%                           | \$6,841                        |  |  |  |
| Tuned to 1-in-10 LOLE          | \$141                                 | \$54                  | 7.8%                | 0.100           | 421                            | 0.4%                           | 36.5%                                            | 7.8%                           | \$6,810                        |  |  |  |
| Through (CC Net CONE, 1-in-10) | \$141                                 | \$48                  | 20.8%               | 0.152           | -586                           | -0.5%                          | 50.5%                                            | 20.8%                          | \$6,748                        |  |  |  |

MRI curves (or kinked curves with parameters informed by MRI) could be within a workable range of performance.

# **Locational VRR Curves**

### Locational VRR curves

Locational VRR curves presently use the same formula as the system curve, though LDAs are subject to distinct considerations:

- Width: slope needs to be large as a % of LDA size in order to provide meaningful supports for price stability (one plant can drive differences between the price cap and floor in small LDAs)
- Price cap: may need to account for greater uncertainty in Net CONE in some locations (e.g. if the reference technology cannot be developed there)
- **Reliability**: prices should rise to the cap before very poor reliability is observed
- Approach for consideration in RASTF: Locational MRI-based demand curves (see New England's approach) that would reduce price volatility and have stronger conceptual basis



- day)

UCAP MW

2026/

Ś

#### LOCATIONAL VRR CURVES

# Locational supply variability may justify wider LDA curves



Note: Net Supply = Supply + CETL – Reliability Requirement. The standard deviation of net supply is 3,851 MW for MAAC and 506 MW for PS North. Variability as observed over 2013/14-2021/22 delivery years.

# Discussion

#### **NEXT STEPS**

## Stakeholder input to inform the Quadrennial Review

Provide initial input on draft results by December 23 to <u>Melissa.Pilong@pjm.com</u> or <u>Gary.Helm@pjm.com</u>



# **Appendix: Modeling Details**

#### **APPENDIX**

### Input assumptions

- Gross and net CONE values are placeholder values
- All supply and demand variability parameters are derived from historical market data

### **Input Assumptions**

#### **PJM System Parameters**

| Peak Load, adjusted for FRR <i>(MW)</i><br>UCAP Reserve Margin <i>(UCAP %)</i>                                                               | 121,693<br>8.9% |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Reliability Requirement, adjusted for FRR (UCAP MW)                                                                                          | 132,573         |
| Net CONE                                                                                                                                     |                 |
| CC Net CONE <i>(\$2026/MW-day)</i>                                                                                                           | \$141           |
| CC Gross CONE <i>(\$2026/MW-day)</i>                                                                                                         | \$381           |
| CT Net CONE <i>(\$2026/MW-day)</i>                                                                                                           | \$287           |
| CT Gross CONE <i>(\$2026/MW-day)</i>                                                                                                         | \$356           |
| Variability                                                                                                                                  |                 |
| BRA Supply Variability <i>(Std. dev as a % of total supply offers)</i><br>BRA Reliability Requirement Variability <i>(Std. dev as a % of</i> | 3.2%            |
| BRA reliability requirement)                                                                                                                 | 2.2%            |
| Forward to Prompt Supply Variability <i>(Std. dev as a % of BRA</i>                                                                          |                 |
| total supply offered)                                                                                                                        | 1.1%            |
| Forward to Prompt Reliability Requirement Variability (Std.                                                                                  |                 |
| dev as a % of 3rd IA reliability requirement)                                                                                                | 1.7%            |
|                                                                                                                                              |                 |

# **Contact Information**



Sam Newell

PRINCIPAL | BOSTON

<u>Sam.Newell@brattle.com</u> +1 (617) 234-5725



Kathleen Spees

**PRINCIPAL | WASHINGTON DC** 

<u>Kathleen.Spees@brattle.com</u> +1 (202) 419-3390



Andrew Thompson ELECTRICITY MODELING SPECIALIST | MADRID Andrew.Thompson@brattle.com +34.1.910.487121